Hydrogen prevents lipopolysaccharide-induced pulmonary microvascular endothelial cell injury by inhibiting store-operated Ca2+ entry regulated by STIM1/Orai1

Background: Sepsis is a type of life-threatening organ dysfunction that is caused by a dysregulated host response to infection. The lung is the most vulnerable target organ under septic conditions. Pulmonary microvascular endothelial cells (PMVECs) play a critical role in acute lung injury (ALI) caused by severe sepsis. The impairment of PMVECs during sepsis is a complex regulatory process involving multiple mechanisms, in which the imbalance of calcium (Ca2+) homeostasis of endothelial cells is a key factor in its functional impairment. Our preliminary results indicated that hydrogen gas (H2) treatment significantly alleviates lung injury in sepsis, protects PMVECs from hyperpermeability, and decreases the expression of plasma membrane stromal interaction molecule 1 (STIM1), but the underlying mechanism by which H2 maintains Ca2+ homeostasis in endothelial cells in septic models remains unclear. Thus, the purpose of the present study was to investigate the molecular mechanism of STIM1 and Ca2+-release-activated- Ca2+ channel protein1 (Orai1) regulation by H2 treatment and explore the effect of H2 treatment on Ca2+ homeostasis in lipopolysaccharide (LPS)-induced PMVECs and LPS-challenged mice. Methods: We observed the role of H2 on LPS-induced ALI of mice in vivo. The lung wet/dry (W/D) weight ratio, total protein in the bronchoalveolar lavage (BAL) fluid and Evans blue dye (EBD) assay were used to evaluate the pulmonary endothelial barrier damage of LPS-challenged mice. The expression of STIM1 and Orai1 were also detected using epifluorescence microscopy. Moreover, we also investigated the role of H2- rich medium in regulating PMVECs under LPS treatment, which induced injury similar to sepsis in vitro. The expression of STIM1 and Orai1 as well as the Ca2+ concentration in PMVECs were examined. Results: In vivo, we found that H2 alleviated ALI of mice through decreasing lung W/D weight ratio, total protein in the BAL fluid and permeability of lung. In addition, H2 also decreased the expression of STIM1 and Orai1 in pulmonary microvascular endothelium. In vitro, LPS treatment increased the expression levels of STIM1 and Orai1 in PMVECs, while H2 reversed these changes. Furthermore, H2 ameliorated Ca2+ influx under sepsis-mimicking conditions. Treatment with the sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) inhibitor, thapsigargin (TG), resulted in a significant reduction in cell viability as well as a reduction in the expression of junctional proteins, including VE-cadherin and occludin. Treatment with the store-operated Ca2+ entry (SOCE) inhibitor, YM-58483 (BTP2), increased the cell viability and expression of junctional proteins. Conclusions: The present study suggested that H2 treatment alleviates LPS-induced PMVEC dysfunction by inhibiting SOCE mediated by STIM1 and Orai1 in vitro and in vivo.

Investigating the Effect of Hydrogen-Rich Water on Liver Cell Injury and Liver Cancer by Regulating GP73/ TGF-β Pathway

Background Liver cancer is an extremely heterogeneous malignant disease among tumors identified to date. In recent years, a large number of studies have found that low-concentration hydrogen or hydrogen-rich water or hydrogen-saturated physiological saline has a protective effect on many diseases. Observing the intervention effect of hydrogen-rich water and speculate whether its effect is regulated by GP73/TGF-β signaling pathway would provide a basis for clinical treatment using hydrogen in liver cancer.Method The(N-nitrosodiethylamine) DEN-induced LX-2 hepatocyte injury model, hepatocarcinoma cell(HepG2 cells), and normal hepatic stellate cell LX-2 and HepG2 co-culture system were treated with hydrogen-rich water, and the cell viability was measured by the Cell Counting Kit-8(CCK-8)method. Also, the supernatant was collected to determination the transforming growth factor (TGF-β), tumor necrosis factor (TNF-α), and osteopontin (OPN) content. Subsequently, qPCR method was employed to detect the expression of GP73, TGF-β, and Smad2 mRNA in the cell. Total cell protein was extracted, and the level of GP73, TGF-β, and Smad2 proteins in the cells was detected by Western blot.ResultAfter the intervention of hydrogen-rich water, DEN increases the activity of LX-2 hepatocytes, inhibits the secretion of TGF-β, downregulate the expression of GP73, TGF-β, and Smad2 mRNA in the injured LX-2 cells, inhibits the expression of GP73 and TGF-β proteins, and exerts a protective effect on injured cells. The intervention with hydrogen-rich water in HepG2 liver cancer cells inhibits the expression of GP73 mRNA and protein in the cells, upregulates the expression of TGF-β mRNA and protein, inhibits the expression of OPN, and exerts an anti-proliferation effect on liver cancer cells. In the co-culture system of LX-2 and HepG2, the effect of hydrogen-rich water showed different effects with the altered ratio of the two cells in the system.Conclusion Hydrogen-rich water has a protective effect on liver cell damage and an inhibitory effect on liver cancer cells, which is effectuated by regulating the GP73/TGF-β signaling pathway.

RNA sequencing analysis reveals apoptosis induction by hydrogen treatment in endometrial cancer via TNF and NF-κB pathways

Background: To evaluate the activity of hydrogen in endometrial cancer and elucidate its underlying molecular mechanisms. Methods: Ishikawa, HEC1A and AN3CA cells were incubated in DMEM medium with or without hydrogen. RNA sequencing was used to explore the association of hydrogen treatment with signaling pathways and functional genes in endometrial cancer cells. The apoptotic rates of the three endometrial cancer cells were evaluated by fluorescein isothiocyanate (FITC) Annexin V and Annexin V-allophycocyanin (APC)/propidium iodide double staining. Results: RNA sequencing analysis revealed that hydrogen induced TNF/NF-κB and apoptosis pathways in endometrial cancer cells. The gene sets between hydrogen treatment groups and non-treated groups were mapped in accordance with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) terms. Hydrogen treatment significantly increased the apoptotic rates of endometrial cancer cells. Conclusions: Taken together, our data indicate that hydrogen can serve as a therapeutic target for endometrial cancer via TNF/NF-κB pathway and apoptosis induction.

A drug co-delivery platform made of magnesium-based micromotors enhances combination therapy for hepatoma carcinoma cells

Combination therapy is an emerging strategy to overcome multidrug resistance (MDR) in hepatocellular carcinoma (HCC) chemotherapy treatment. However, the passive diffusion in traditional delivery systems greatly retards the approach and penetration of drugs into hepatocellular carcinoma cells and thus hinders the efficacy of combination therapy. Micro/nanomotors with autonomous locomotion in a tiny scale provide the possibility of tackling this issue. Herein, an active drug delivery micromotor platform delicately designed to load drugs with different physicochemical properties and enhance the drug permeability of cells is demonstrated for HCC chemotherapy treatment. The biocompatible micromotor platform Mg/PLGA/CHI comprised magnesium (Mg) coated with two polymer layers made of poly(lactic-co-glycolic acid) (PLGA) and chitosan (CHI), where the hydrophobic and hydrophilic drugs doxorubicin (Dox) and Curcumin (Cur) were loaded, respectively. The autonomous motion of the micromotors with velocity up to 45 μm s-1 greatly enhanced the diffusion of chemotherapeutic drugs and led to higher extracellular and intracellular drug distribution. Moreover, hydrogen produced during the motion eliminated the excess reactive oxygen species (ROS) in the human hepatocellular carcinoma (HepG2) cells. Compared with inert groups, the absorption of Dox and Cur from the active micromotors was about 2.9 and 1.5 times higher in human hepatocellular carcinoma (HepG2) cells. In addition, the anti-tumor activity also obviously improved at the micromotor concentration of 1 mg mL-1 (cell proliferation was reduced by almost 30%). Overall, this work proposes an approach based on loading different chemotherapy agents on an active delivery system to enhance drug permeability and overcome MDR and provides a potentially effective therapeutic strategy for the treatment of HCC.

Hydrogen-rich water reduces cell damage by reducing excessive autophagy in mouse neuronal cells after oxygen glucose deprivation/reoxygenation

Objective: To investigate whether hydrogen-rich water exerts a protective effect against cellular injury by affecting the level of autophagy after oxygen glucose deprivation/reoxygenation (OGD/R) in a mouse hippocampal neuronal cell line (HT22 cells). Methods: HT22 cells in logarithmic growth phase were cultured in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay to find the optimal concentration of Na2S2O4. HT22 cells were divided into control group (NC group), OGD/R group (sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to normal medium for 4 hours) and hydrogen-rich water treatment group (HW group, sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to medium containing hydrogen-rich water for 4 hours). The morphology of HT22 cells was observed by inverted microscopy; cell activity was detected by CCK-8 method; cell ultrastructure was observed by transmission electron microscopy; the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 was detected by immunofluorescence; the protein expression of LC3II/I and Beclin-1, markers of cellular autophagy, was detected by Western blotting. Results: Inverted microscopy showed that compared with the NC group, the OGD/R group had poor cell status, swollen cytosol, visible cell lysis fragments and significantly lower cell activity [(49.1±2.7)% vs. (100.0±9.7)%, P < 0.01]; compared with the OGD/R group, the HW group had improved cell status and remarkably higher cell activity [(63.3±1.8)% vs. (49.1±2.7)%, P < 0.01]. Transmission electron microscopy showed that the neuronal nuclear membrane of cells in the OGD/R group was lysed and a higher number of autophagic lysosomes were visible compared with the NC group; compared with the OGD/R group, the neuronal damage of cells in the HW group was reduced and the number of autophagic lysosomes was notably decreased. The results of immunofluorescence assay showed that the expressions of LC3 and Beclin-1 were outstandingly enhanced in the OGD/R group compared with the NC group, and the expressions of LC3 and Beclin-1 were markedly weakened in the HW group compared with the OGD/R group. Western blotting assay showed that the expressions were prominently higher in both LC3II/I and Beclin-1 in the OGD/R group compared with the NC group (LC3II/I: 1.44±0.05 vs. 0.37±0.03, Beclin-1/β-actin: 1.00±0.02 vs. 0.64±0.01, both P < 0.01); compared with the OGD/R group, the protein expression of both LC3II/I and Beclin-1 in the HW group cells were notably lower (LC3II/I: 0.54±0.02 vs. 1.44±0.05, Beclin-1/β-actin: 0.83±0.07 vs. 1.00±0.02, both P < 0.01). Conclusions: Hydrogen-rich water has a significant protective effect on OGD/R-causing HT22 cell injury, and the mechanism may be related to the inhibition of autophagy.

Space Station-like Composite Nanoparticles for Co-Delivery of Multiple Natural Compounds from Chinese Medicine and Hydrogen in Combating Sensorineural Hearing Loss

Ototoxic drugs such as aminoglycoside antibiotics and cisplatin (CDDP) can cause sensorineural hearing loss (SNHL), which is closely related to oxidative stress and the acidification of the inner ear microenvironment. Effective treatment of SNHL often requires multifaceted approach due to the complex pathology, and drug combination therapy is expected to be at the forefront of modern hearing loss treatment. Here, space-station-like composite nanoparticles (CCC@mPP NPs) with pH/oxidation dual responsiveness and multidrug simultaneous delivery capability were constructed and then loaded with various drugs including panax notoginseng saponins (PNS), tanshinone IIA (TSIIA), and ammonia borane (AB) to provide robust protection against SNHL. Molecular dynamics simulation revealed that carboxymethyl chitosan/calcium carbonate-chitosan (CCC) NPs and monomethoxy poly(ethylene glycol)-PLGA (mPP) NPs can rendezvous and dock primarily by hydrogen bonding, and electrostatic forces may be involved. Moreover, CCC@mPP NPs crossed the round window membrane (RWM) and entered the inner ear through endocytosis and paracellular pathway. The docking state was basically maintained during this process, which created favorable conditions for multidrug delivery. This nanosystem was highly sensitive to pH and reactive oxygen species (ROS) changes, as evidenced by the restricted release of payload at alkaline condition (pH 7.4) without ROS, while significantly promoting the release in acidic condition (pH 5.0 and 6.0) with ROS. TSIIA/PNS/AB-loaded CCC@mPP NPs almost completely preserved the hair cells and remained the hearing threshold shift within normal limits in aminoglycoside- or CDDP-treated guinea pigs. Further experiments demonstrated that the protective mechanisms of TSIIA/PNS/AB-loaded CCC@mPP NPs involved direct and indirect scavenging of excessive ROS, and reduced release of pro-inflammatory cytokines. Both in vitro and in vivo experiments showed the high biocompatibility of the composite NPs, even after long-term administration. Collectively, this work suggests that composite NPs is an ideal multi-drug-delivery vehicle and open new avenues for inner ear disease therapies.

Hydrogen Protection Boosts the Bioactivity of Chrysanthemum morifolium Extract in Preventing Palmitate-Induced Endothelial Dysfunction by Restoring MFN2 and Alleviating Oxidative Stress in HAEC Cells

As the most important natural antioxidants in plant extracts, polyphenols demonstrate versatile bioactivities and are susceptible to oxidation. The commonly used ultrasonic extraction often causes oxidation reactions involving the formation of free radicals. To minimize the oxidation effects during the ultrasonic extraction process, we designed a hydrogen (H2)-protected ultrasonic extraction method and used it in Chrysanthemum morifolium extraction. Hydrogen-protected extraction improved the total antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and polyphenol content of Chrysanthemum morifolium water extract (CME) compared with air and nitrogen (N2) conditions. We further investigated the protective effects and mechanisms of CME on palmitate (PA)-induced endothelial dysfunction in human aorta endothelial cells (HAECs). We found that hydrogen-protected CME (H2-CME) best-prevented impairment in nitric oxide (NO) production, endothelial NO synthase (eNOS) protein level, oxidative stress, and mitochondrial dysfunction. In addition, H2-CME prevented PA-induced endothelial dysfunction by restoring mitofusin-2 (MFN2) levels and maintaining redox balance.

Assessment of the effects of hydrogen water on human gingival fibroblast cell culture in patients with chronic periodontitis

Background: Activated inflammatory cells produce reactive oxygen species (ROS) to eliminate pathogens. Under normal conditions, the pathogens are taken care of, and tissues are repaired. However, in periodontal disease, persistent inflammation causes increased ROS release and impaired healing. Therefore, removal of overproduced ROS using antioxidants is necessary. Hydrogen water has an antioxidative effect on cells and impedes oxidative stress-related disorders. Aim: To study the effect of hydrogen water on cell viability, migration, and its antioxidative potential in fibroblasts obtained from chronic periodontitis patients. Materials and methods: The gingival tissue samples were obtained from 26 subjects (13 periodontally healthy individuals and 13 chronic periodontitis patients) and processed. The human gingival fibroblasts were cultured and the assays were commenced once adequate growth was detected. The effect of hydrogen water on cell viability was checked by neutral red assay, while the migration potential was assessed by transwell migration assay. The antioxidative potential of hydrogen water was evaluated by CUPRAC assay. Statistical analysis: Intergroup comparison was done using Mann-Whitney U-test. Intragroup comparison was done using Wilcoxon signed-rank test. Results: Hydrogen water was nontoxic to the fibroblasts at 24 h and 48 h. The intergroup comparison of the cell viability between hydrogen water-treated periodontally healthy gingival fibroblasts (HF) and fibroblasts from patients with chronic periodontitis (CF) showed a statistically significant (P = 0.00) difference at 24 h and 48 h. Hydrogen water also positively influenced the migratory capacity. Hydrogen water-treated fibroblasts obtained from chronic periodontitis patients showed more migration in comparison to the healthy group (P = 0.00). Hydrogen water showed an antioxidative potential. The maximum potential was seen in relation to the fibroblasts obtained from chronic periodontitis patients at 48 h. Conclusion: Hydrogen water was nontoxic, increased the migratory capacity, and showed an antioxidative potential on human fibroblasts obtained from periodontally healthy individuals and patients with chronic periodontitis.

The Role of LincRNA-EPS/Sirt1/Autophagy Pathway in the Neuroprotection Process by Hydrogen against OGD/R-Induced Hippocampal HT22 Cells Injury

Cerebral ischemia/reperfusion (CI/R) injury causes high disability and mortality. Hydrogen (H2) enhances tolerance to an announced ischemic event; however, the therapeutic targets for the effective treatment of CI/R injury remain uncertain. Long non-coding RNA lincRNA-erythroid prosurvival (EPS) (lincRNA-EPS) regulate various biological processes, but their involvement in the effects of H2 and their associated underlying mechanisms still needs clarification. Herein, we examine the function of the lincRNA-EPS/Sirt1/autophagy pathway in the neuroprotection of H2 against CI/R injury. HT22 cells and an oxygen-glucose deprivation/reoxygenation (OGD/R) model were used to mimic CI/R injury in vitro. H2, 3-MA (an autophagy inhibitor), and RAPA (an autophagy agonist) were then administered, respectively. Autophagy, neuro-proinflammation, and apoptosis were evaluated by Western blot, enzyme-linked immunosorbent assay, immunofluorescence staining, real-time PCR, and flow cytometry. The results demonstrated that H2 attenuated HT22 cell injury, which would be confirmed by the improved cell survival rate and decreased levels of lactate dehydrogenase. Furthermore, H2 remarkably improved cell injury after OGD/R insult via decreasing pro-inflammatory factors, as well as suppressing apoptosis. Intriguingly, the protection of H2 against neuronal OGD/R injury was abolished by rapamycin. Importantly, the ability of H2 to promote lincRNA-EPS and Sirt1 expression and inhibit autophagy were abrogated by the siRNA-lincRNA-EPS. Taken together, the findings proved that neuronal cell injury caused by OGD/R is efficiently prevented by H2 via modulating lincRNA-EPS/Sirt1/autophagy-dependent pathway. It was hinted that lincRNA-EPS might be a potential target for the H2 treatment of CI/R injury.

Revealing the antibacterial power of hydrogen-releasing PdH nanohydride against drug resistant Staphylococcus aureus: an in-depth mechanism study

Currently, multidrug resistant (MDR) bacterial infections are a great threat to public health, and the development of novel strategies for high efficiency combatting of MDR bacteria is in urgent demand. Hydrogen (H2) is a small gas with a high reducing ability, and plenty of recent studies have demonstrated its therapeutic effect on many diseases. However, the antibacterial effectiveness and mechanism of H2 against MDR bacteria are still unknown. In the present work, using PdH nanohydride with a temperature responsive H2-releasing property as the H2 source, we demonstrated that H2 was not only able to inhibit the growth of normal Staphylococcus aureus (S. aureus), but could also effectively eliminate single drug resistant S. aureus (CRSA) and multidrug resistant S. aureus (MRSA), as well as the biofilms formed by those bacteria. Moreover, an in-depth mechanism regarding the anti-antibiotic-resistance activity of H2 was elucidated by us, in which H2 exerted its antibacterial effect by firstly causing severe membrane damage, followed by boosting generation of intracellular ROS, which subsequently triggered DNA damage and finally led to bacterial death. The proposed mechanism was further verified by genomic analysis, where a cluster of genes related to bacterial membrane integrity, biofilm formation, metabolism and DNA functions was significantly perturbed by the released H2. In particular, H2 boosted intracellular ROS generation by destroying the redox homeostasis of bacterial metabolism. More importantly, we revealed that H2 was able to alleviate the antibiotic resistance of CRSA and MRSA by significantly down-regulating the expression of many drug-resistant genes, e.g. the norG gene of CRSA, and fmtA, gpsB, sarA and marR genes of MRSA, as well as reducing the minimal inhibitory concentration (MIC) of ciprofloxacin/ampicillin against CRSA/MRSA. The findings in our work suggested that H2 therapy is a promising tool for combating antibiotic-resistant bacteria.