NIR-Activatable Heterostructured Nanoadjuvant Cop/Nicop Executing Lactate Metabolism Interventions for Boosted Photocatalytic Hydrogen Therapy And Photoimmunotherapy

Bin Liu, binbin Ding, Chunzheng Yang, Jia Tan, Jiashi Zhang, Jun Lin, Meifang Wang, Meng Yuan, Mengyu Chang, Ping'an Ma, Yulong Bian, Zhendong Liu

Read more:

DOI: 10.1002/adma.202308774 DOI is the universal ID for this study.

This link will take you to the full study.


Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic non-invasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. Although several metabolic interventions have been devoted to ameliorate immunosuppression, intracellular residual LA still remains a potential energy source for oncocyte proliferation. Herein, we construct an immunomodulatory nanoadjuvant based on a yolk-shell CoP/NiCoP (CNCP) heterostructure loaded with the monocarboxylate transporter 4 (MCT4) inhibitor fluvastatin sodium (Flu) to concurrently relieve immunosuppression and elicit robust antitumor immunity. Under NIR irradiation, CNCP heterojunctions exhibit superior photothermal performance and photocatalytic production of reactive oxygen species (ROS) and hydrogen. The continuous heat then facilitates Flu release to restrain LA exudation from tumor cells, whereas cumulative LA can be depleted as a hole scavenger to improve photocatalytic efficiency. Subsequently, potentiated photocatalytic therapy (PCT) can not only initiate systematic immunoreaction, but also provoke severe mitochondrial dysfunction and disrupt the energy supply for heat shock protein (HSP) synthesis, in turn realizing mild photothermal therapy (PTT). Consequently, LA metabolic remodeling endows an intensive cascade treatment with an optimal safety profile to effectually suppress tumor proliferation and metastasis, which offers a new paradigm for the development of metabolism-regulated immunotherapy. This article is protected by copyright. All rights reserved.

Publish Year 2023
Country China
Rank Positive
Journal Advanced Materials
Primary Topic Whole Body
Secondary TopicImmune Regulation
Model Molecular Assay
Tertiary TopicNovel Therapy
Vehicle Gas (Sustained Release)
pH N/A
Application Implantation