Molecular hydrogen consumption in the human body during the inhalation of hydrogen gas

Inhaling or ingesting hydrogen (H2) gas improves oxidative stress-induced damage in animal models and humans. We previously reported that H2 was consumed throughout the human body after the ingestion of H2-rich water and that the H2 consumption rate ([Formula: see text]) was 1.0 μmol/min/m(2) body surface area. To confirm this result, we evaluated [Formula: see text]during the inhalation of low levels of H2 gas. After measuring the baseline levels of exhaled H2 during room air breathing via a one-way valve and a mouthpiece, the subject breathed low levels (160 ppm) of H2 gas mixed with purified artificial air. The H2 levels of their inspired and expired breath were measured by gas chromatography using a semiconductor sensor. [Formula: see text] was calculated using a ventilation equation derived from the inspired and expired concentrations of O2/CO2/H2, and the expired minute ventilation volume, which was measured with a respiromonitor. As a result, [Formula: see text] was found to be approximately 0.7 μmol/min/m(2)BSA, which was compatible with the findings we obtained using H2-rich water. [Formula: see text] varied markedly when pretreatment fasting to reduce colonic fermentation was not employed, i.e., when the subject’s baseline breath hydrogen level was 10 ppm or greater. Our H2 inhalation method might be useful for the noninvasive monitoring of hydroxyl radical production in the human body.

Nuclear factor-κB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits

Early brain injury (EBI), a significant contributor to poor outcome after subarachnoid hemorrhage (SAH), is intimately associated with neuronal apoptosis. Recently, the protective role of hydrogen (H2 ) in the brain has been widely studied, but the underlying mechanism remains elusive. Numerous studies have shown nuclear factor-κB (NF-κB) as a crucial survival pathway in neurons. Here we investigated the role of H2 in EBI following SAH, focusing on the NF-κB pathway. A double blood injection model was used to produce experimental SAH, and H2 -rich saline was injected intraperitoneally. NF-κB activity within the occipital cortex was measured. Immunofluorescence was performed to demonstrate the activation of NF-κB; Bcl-xL and cleaved caspase-3 were determined via Western blot. Gene expression of Bcl-xL was detected by real-time PCR, and TUNEL and Nissl staining were performed to illustrate brain injury in the occipital cortex. SAH induced a significant increase of cleaved caspase-3. Correspondingly, TUNEL staining demonstrated obvious neuronal apoptosis following SAH. In contrast, H2 treatment markedly increased NF-κB activity and the expression of Bcl-xL and decreased the level of cleaved caspase-3. Additionally, H2 treatment significantly reduced post-SAH neuronal apoptosis. The current study shows that H2 treatment alleviates EBI in the rabbits following SAH and that NF-κB/Bcl-xL pathway is involved in the protective role of H2 . © 2013 Wiley Periodicals, Inc.

Amelioration of cardio-renal injury with aging in dahl salt-sensitive rats by H2-enriched electrolyzed water

Recent studies have revealed the biological effects of H2 in suppressing organ injuries due to acute inflammation and oxidative stress. Dahl salt-sensitive (SS) rats naturally develop elevated blood pressure (BP) and kidney injury with aging. The present study examined the effect of long-term supplementation of H2 in drinking water on age-related changes.Four-week-old male Dahl SS rats were fed 3 types of water (n = 30 each) for up to 48 weeks: filtered water (FW), water with a high H2 content (492.5 ppb) obtained with water electrolysis (EW), or dehydrogenated EW (DW). Animals were subjected to histological analysis at 16, 24, and 48 weeks.The FW group showed progressive BP elevation and increases in albuminuria and cardiac remodeling during the course of treatment. Histologically, there were significant changes as a function of aging, i.e., glomerular sclerosis with tubulointerstitial fibrosis in the kidney, and increased cardiomyocyte diameter with interstitial fibrosis in the heart at 48 weeks. These changes were related to the enhanced inflammation and oxidative stress in the respective organs. However, there were no striking differences in BP among the groups, despite histological alterations in the EW group being significantly decreased when compared to FW and DW in both organs, with concurrently lower oxidative stress and inflammatory markers at 48 weeks. Long-term ad libitum consumption of H2-enriched electrolyzed water can ameliorate the processes of kidney injury and cardiac remodeling with aging in Dahl SS rats by suppressing, at least partly, elevated inflammation and oxidative stress.

Beneficial effects of hydrogen-rich saline against spinal cord ischemia-reperfusion injury in rabbits

Hydrogen-rich saline (HS) is reported to be a new therapeutic agent in ischemia-reperfusion (I/R)-induced organ damage. The present study was designed to investigate the beneficial effects of HS against spinal cord I/R injury and its associated mechanisms. Spinal cord ischemia was induced by infrarenal aortic occlusion for 20min in male New Zealand white rabbits. Different doses of HS were intravenously (i.v.) administered at 5min before or after the beginning of reperfusion. Moreover, the roles of mitochondrial ATP-sensitive potassium channels (mitoKATP), oxidative stress, inflammatory cytokines and apoptosis was assessed. Here, we found that I/R-challenged rabbits exhibited significant spinal cord injury characterized by the decreased numbers of normal motor neurons and hind-limb motor dysfunction, which was significantly ameliorated by 5mL/kg and 10mL/kg HS treatment before reperfusion or 10mL/kg HS treatment after reperfusion. However, the protective effects of HS treatment in spinal cord I/R injury were partially abolished by the selective mitoKATP channel blocker 5-hydroxydecanoate (5-HD). Moreover, we showed that the beneficial effects of 10mL/kg HS treatment against spinal cord I/R damage were associated with the decreased levels of oxidative products [8-iso-prostaglandin F2α (8-iso-PGF2α) and malondialdehyde (MDA)] and pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and high-mobility group box 1 (HMGB1)], as well as the increased activities of antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] in serum at 6h, 12h, 24h, 48h and 72h after reperfusion and in spinal cord at 72h after reperfusion. Furthermore, HS treatment (10mL/kg) reduced caspase-3 activity in the spinal cord of this model. Thus, HS may be an effective therapeutic agent for spinal cord I/R injury via activation of mitoKATP channels as well as reduction of oxidative stress, inflammatory cytokines and apoptosis.

Hydrogen inhalation decreases lung graft injury in brain-dead donor rats

BACKGROUND: The process of brain death induces acute lung injury in donors and aggravates ischemia-reperfusion injury (IRI) in grafts. Hydrogen, a new anti-oxidant, attenuates IRI in several organ transplant models. We examined whether 2% inhaled hydrogen would show favorable effects on lung grafts from brain-dead donor rats. METHODS: Brain-dead donor rats inhaled mixed gases with either 50% oxygen and 50% nitrogen or mixed gases with 2% hydrogen, 50% oxygen and 48% nitrogen for 2 hours. The recipients inhaled the same gas as the donors and were euthanized 2 hours after lung transplantation. RESULTS: Hydrogen improved PaO(2)/FIO(2) and PVO(2)/FIO(2) from the arterial and pulmonary venous blood in recipients and decreased the lung injury score in grafts from brain-dead donors. Hydrogen decreased the amount of IL-8 and TNF-α in serum, inhibited the activity of malondialdehyde and myeloperoxidase, and increased the activity of superoxide dismutase in the lung grafts from brain-dead donors. Furthermore, hydrogen decreased the apoptotic index of the cells and inhibited the protein expression of intercellular adhesion molecule-1 and caspase-3 in lung grafts from brain-dead donors. CONCLUSIONS: Hydrogen can exert protective effects on lung grafts from brain-dead donors through anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms.

Therapeutic Effects of Hydrogen-Rich Solution on Aplastic Anemia in Vivo

Background: Aplasitc anemia (AA) is a bone marrow failure syndrome characterized by an immune-mediated destruction of hematopoietic stem cells. Though clinical symptoms could be ameliorated by bone marrow transplantation and/or immunosuppressive therapy, frequent recurrence and especially evolution of clonal hematologic diseases remains problematic clinically. Cytokines such as interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) secreted by autologous T cells are closely related with the development of AA. Hydrogen-rich solution was reported to inhibit the levels of cytokines including INF-γ, TNF-α and IL-6 in vivo in recent studies. This study was to investigate the potential therapeutic effects of hydrogen-rich solution on AA in vivo. Methods: AA model was determined in vivo by mice and body weights of the mice were used as the basic physiological index. Peripheral blood cells were calculated to evaluate the hematologic recovery degree. Bone marrow nucleated cells (BMNCs), tissue histology, as well as CFU-S and CFU-GM forming units were used to evaluate the recovery of bone marrow microenvironment. The ratio of CD4(+) and CD8(+) cells were examined along with cytokine levels in serum to determine the efficacy of H2-rich solution on the affected immunological functions. Results: Body weight and number of peripheral blood cells were significantly improved for mice in the H2-rich solution treated groups as compared with those with AA. The number of BMNCs and CFUs increased markedly and the bone marrow microenvironment was also improved significantly. The experimental group restrained the cell apoptosis, relieved hyperemia and accelerated tissue repair. The number of CD4(+) and CD8(+) cells as well as the ratio of CD4/CD8 increased to normal gradually, while the levels of TNF-α, IFN-γ, and IL-6 in serum decreased after H2-rich solution treatment. Conclusion: Our study firstly showed that hydrogen-rich solution accelerated the recovery of either hematological or immunological recovery on aplastic anemia mice. This finding suggests hydrogen-rich solution as a potential clinical therapeutic agent for AA. © 2013 S. Karger AG, Basel.

Effects of Hydrogen-Rich Saline on Taurocholate-Induced Acute Pancreatitis in Rat

Oxidative stress plays an important role in the pathogenesis of acute pancreatitis (AP). As an ideal exterminator of poisonous free radicals, hydrogen can clearly reduce the degree of oxidative damage caused by severe acute pancreatitis (SAP) and lessen the presence of inflammatory cytokines. The aim of this study was to investigate the effects and mechanism of hydrogen-rich saline on SAP in rats. Serum TNF- α , IL-6, and IL-18 and histopathological score in the pancreas were reduced after hydrogen-rich saline treatment. Malondialdehyde (MDA) and myeloperoxidase (MPO) contents were obviously reduced, while superoxide dismutase (SOD) and glutathione (GSH) contents were increased after hydrogen-rich saline treatment. The expression of mRNA of tumor necrosis factor- α (TNF- α ) and intercellular adhesion molecule-1 (ICAM-1) in the pancreas was reduced in hydrogen-rich saline treated group. In conclusion, intravenous hydrogen-rich saline injections could attenuate the severity of AP, probably via inhibiting the oxidative stress and reducing the presence of inflammatory mediators.

Protective effect of hydrogen-rich saline on ischemia/reperfusion injury in rat skin flap

Objective: Skin damage induced by ischemia/reperfusion (I/R) is a multifactorial process that often occurs in plastic surgery. The mechanisms of I/R injury include hypoxia, inflammation, and oxidative damage. Hydrogen gas has been reported to alleviate cerebral I/R injury by acting as a free radical scavenger. Here, we assessed the protective effect of hydrogen-rich saline (HRS) on skin flap I/R injury. Methods: Abdominal skin flaps of rats were elevated and ischemia was induced for 3 h; subsequently, HRS or physiological saline was administered intraperitoneally 10 min before reperfusion. On postoperative Day 5, flap survival, blood perfusion, the accumulation of reactive oxygen species (ROS), and levels of cytokines were evaluated. Histological examinations were performed to assess inflammatory cell infiltration. Results: Skin flap survival and blood flow perfusion were improved by HRS relative to the controls. The production of malondialdehyde (MDA), an indicator of lipid peroxidation, was markedly reduced. A multiplex cytokine assay revealed that HRS reduced the elevation in the levels of inflammatory cytokines, chemokines and growth factors, with the exception of RANTES (regulated on activation, normal T-cell expressed and secreted) growth factor. HRS treatment also reduced inflammatory cell infiltration induced by I/R injury. Conclusions: Our findings suggest that HRS mitigates I/R injury by decreasing inflammation and, therefore, has the potential for application as a therapy for improving skin flap survival.

Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression

Molecular hydrogen has been proved effective in ameliorating cerebral ischemia/reperfusion (I/R) injury by selectively neutralizing reactive oxygen species. Lactulose can produce considerable amount of hydrogen through fermentation by the bacteria in the gastrointestinal tract. To determine the neuroprotective effects of lactulose against cerebral I/R injury in rats and explore the probable mechanisms, we carried out this study. The stroke model was produced on Sprague-Dawley(SD) rats through middle cerebral artery occlusion(MCAO). Intragastric administration of lactulose substantially increased hydrogen breath concentration. Behavioral and histopathological verifications matched biochemical findings. Behaviorally, rats in lactulose administration group won higher neurological scores and showed shorter escape latency time in Morris test. Morphologically, 2,3,5-triphenyltetrazolium chloride (TTC) showed smaller infarction volume; Nissl staining manifested relatively clear and intact neurons and TUNEL staining showed less apoptotic neurons. Biochemically, lactulose decreased brain malondialdehyde(MDA) content, caspase-3 activity, 3-nitrotyrosine(3-NT) and 8-hydroxy-2-deoxyguanosine(8-OHdG) concentration and increased superoxide dismutase(SOD) activity. And the effects of lactulose were superior to edaravone. Lactulose orally administered activated the expression of NF-E2-related factor 2(Nrf2) in the brain verified by RT-PCR and Western blot. The antibiotics suppressed the neuroprotective effects of lactulose via reducing hydrogen production. Our study for the first time demonstrated a novel therapeutic effect of lactulose on cerebral ischemia/reperfusion injury and the probable underlying mechanisms. Lactulose intragastrically administered possessed neuroprotective effects on cerebral I/R injury in rats, which could be attributed to hydrogen production by the fermentation of lactulose through intestinal bacteria and Nrf2 activation.

Hydrogen-enriched water restoration of impaired calcium propagation by arsenic in primary keratinocytes

Endemic contamination of artesian water for drinking by arsenic is known to cause several human cancers, including cancers of the skin, bladder, and lungs. In skin, multiple arsenic-induced Bowen’s disease (As-BD) can develop into invasive cancers after decades of arsenic exposure. The characteristic histological features of As-BD include full-layer epidermal dysplasia, apoptosis, and abnormal proliferation. Calcium propagation is an essential cellular event contributing to keratinocyte differentiation, proliferation, and apoptosis, all of which occur in As-BD. This study investigated how arsenic interferes calcium propagation of skin keratinocytes through ROS production and whether hydrogen-enriched water would restore arsenic-impaired calcium propagation. Arsenic was found to induce oxidative stress and inhibit ATP- and thapsigaragin-induced calcium propagation. Pretreatment of arsenic-treated keratinocytes by hydrogen-enriched water or beta-mercaptoethanol with potent anti-oxidative effects partially restored the propagation of calcium by ATP and by thapsigaragin. It was concluded that arsenic may impair calcium propagation, likely through oxidative stress and interactions with thiol groups in membrane proteins.