Hydrogen Attenuates Thyroid Hormone-Induced Cardiac Hypertrophy in Rats by regulating angiotensin II type 1 receptor and NADPH oxidase 2 mediated oxidative stress

Cardiac hypertrophy occurs as a result of high levels of thyroid hormone, which may contribute to heart failure and is closely related to oxidative stress. Hydrogen is a good antioxidant. In this study, we found that intragastric levothyroxine administration for two weeks caused obvious cardiac hypertrophy without reduced systolic function. Additionally, hydrogen inhalation ameliorated the levothyroxine-induced metabolic increase and cardiac hypertrophy in rats. Serum brain natriuretic peptide expression was also attenuated by hydrogen treatment. However, hydrogen had no significant effect on levothyroxine -induced serum troponin I and serum thyroid hormone changes. Hydrogen treatment also reduced the levothyroxine-induced increase in cardiac malondialdehyde, 8-hydroxy-2-deoxyguanosine and serum hydrogen peroxide levels and upregulated superoxide dismutase and glutathione peroxidase activity. Additionally, western blotting results showed that hydrogen inhalation inhibited the expression of cardiac nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), angiotensin II type 1 receptor, sarcoplasmic reticulum Ca2+-ATPase (SERCA2), phospho-phospholamban and α-myosin heavy chain proteins. In conclusion, the present study revealed a protective effect of hydrogen on levothyroxine -induced cardiac hypertrophy by regulating angiotensin II type 1 receptors and NOX2-mediated oxidative stress in rats.

Hydrogen Attenuates Myocardial Injury in Rats by Regulating Oxidative Stress and NLRP3 Inflammasome Mediated Pyroptosis

Purpose: Hydrogen (H2) is an antioxidant with anti-inflammatory and apoptosis functions.This study aimed to estimate the effects of H2 on acute myocardial infarction (AMI) in rats and its association with the inhibition of oxidative stress and cardiomyocyte pyroptosis. Methods: Sixty-four rats were randomly divided into three groups (Sham, AMI, and H2). The left anterior descending coronary artery (LAD) of rats in the AMI and H2 groups was ligated, while rats in the Sham group were threaded without ligation. In addition, 2% H2 was administered by inhalation for 24 h after ligation in the H2 group. Transthoracic echocardiography was performed after H2 inhalation, followed by collection of the serum and cardiac tissue of all rats. Results: H2 inhalation ameliorated the cardiac dysfunction, infarct size and inflammatory cell infiltration caused by AMI. Meanwhile, H2 inhalation reduced the concentration of serum Troponin I (TnI), brain natriuretic peptide (BNP), reactive oxygen species (ROS), cardiac malondialdehyde (MDA), and 8-OHdG. In addition, H2 inhalation inhibited cardiac inflammation and pyroptosis relative proteins expression. Conclusion: H2 effectively promoted heart functions in AMI rats by regulating oxidative stress and pyroptosis.