The Beneficial Effects of Hydrogen-Rich Saline Irrigation on Chronic Rhinitis: A Randomized, Double-Blind Clinical Trial

Purpose: Chronic rhinitis (CR) is a common chronic inflammation of the nasal mucosa. Nasal saline irrigation has been demonstrated to be an effective treatment for CR. In this study, we investigated the beneficial effects of hydrogen-rich saline irrigation as an anti-inflammatory irrigation therapy for CR and compared its effectiveness over saline irrigation. Hydrogen-rich saline (HRS) was investigated due to its antioxidant and anti-inflammatory properties. Methods: A total of 120 patients with CR were randomly divided into two groups, patients irrigated with HR (HRS group) and the control group irrigated with saline (NS group). A randomized, double-blind control study was performed. The main observation index in this study was the total score of nasal symptoms (TNSS). In addition, eosinophilic protein (ECP) of the nasal secretions, nasal nitric oxide (nNO) levels, and levels of regulatory T cells (Treg) and regulatory B cells (Breg) were also compared between the two groups. Furthermore, patients with allergic rhinitis (AR) and non-allergic rhinitis (NAR) were also evaluated based on serum-specific IgE positivity. Results: After treatment, TNSS and nasal ECP in the two groups decreased significantly (P<0.05), with patients in the HRS group showing significantly lower levels compared to the NS group (P<0.05). There were no significant differences in Treg and Breg levels between the two groups. Subgroup analysis showed that TNSS in the AR-HRS group showed a more significant reduction compared to the AR-NS group (P<0.05); however, there were no significant differences for the other inflammatory biomarkers (P>0.05). ECP levels were reduced significantly in the NAR subgroup compared to NS irrigation (P<0.05). There were no obvious adverse events observed in patients during the entire treatment period. Conclusion: Compared to saline irrigation, HRS nasal irrigation was found to improve CR clinical symptoms, especially in patients with AR. HRS could effectively be used for the clinical treatment of patients with CR. Keywords: allergic rhinitis; chronic rhinitis; hydrogen-rich; nasal irrigation; non-allergic rhinitis.

Hydrogen-Rich Saline Ameliorates Allergic Rhinitis by Reversing the Imbalance of Th1/Th2 and Up-Regulation of CD4+CD25+Foxp3+Regulatory T Cells, Interleukin-10, and Membrane-Bound Transforming Growth Factor-β in Guinea Pigs

It is well known that CD4+CD25+Foxp3+Treg cells play an important role in the development of allergic rhinitis (AR); the defect of cell numbers and functions contribute to AR. Hydrogen has been proven effective in alleviating symptoms of AR. We herein aim to verify the protective effects of hydrogen on CD4+CD25+Foxp3+Treg cells in guinea pigs with AR and to explore the effect of hydrogen-rich saline (HRS) on CD4+CD25+Foxp3+Treg cells in animals with AR and investigate the underlying anti-inflammatory mechanism. Eighteen guinea pigs were randomly divided into three groups (control group/AR group/AR-HRS group). The guinea pigs were injected with hydrogen-rich saline (AR-HRS group) for 10 days after sensitization. The control group was injected with an equal volume of normal saline. The number of sneezes, degree of runny nose, and nasal-rubbing movements were scored. Peripheral blood eosinophil count was recorded. The proportions of Th1/Th2 of the peripheral blood and the CD4+CD25+Foxp3+T cells in the CD4+T cells of the spleen and peripheral blood were determined by flow cytometry. The content of interleukin (IL)-10 and transforming growth factor (TGF)-β in the serum was detected by enzyme-linked immunosorbent assay (ELISA). The protein and mRNA expression of Foxp3, IL-10, and TGF-β were determined by Western blot, immunofluorescence, and real-time PCR analysis, respectively. Scores of symptoms, number of eosinophils,and nasal mucosa damage were dramatically reduced after HRS treatment. HRS increased the expression of Foxp3, IL-10, TGF-β, and number of CD4+CD25+Foxp3+Treg cells, which were reduced in AR. HRS also revised the dysregulation of Th1/Th2 balance. Both the number and biological activity of CD4+CD25+Foxp3+Treg cells increased with up-regulation of Th1/Th2 after HRS administration. HRS could play a protective role in attenuating AR through improving the proportion and functions of CD4+CD25+Foxp3+Treg cells.

Changes of nasal nitric oxide in the treatment of allergic rhinitis with hydrogen-rich saline lavage of nasal cavity

Objective:To observe the effect of hydrogen-rich saline on the concentration of nitric oxide in the nose, and to explore the mechanism of its treatment of allergic rhinitis. Method:Twenty patients with moderate to severe persistent allergic rhinitis were enrolled in a randomized, double-blind, self-controlled study. The nasal cavity was lavaged with hydrogen-rich normal saline and normal saline, and the nasal nitric oxide(nNO) value was tested weekly. Result:The test value of nNO was correlated with the diagnosis and curative effect of allergic rhinitis. The difference of nNO test values before and after treatment of the two lavage fluids was statistically significant(P<0.01). Conclusion:Hydrogen-rich saline lavage can cause nNO change in nasal cavity which may be used in the treatment of allergic rhinitis.