Short-term H2 inhalation improves running performance and torso strength in healthy adults

In this randomized, double-blind, placebo-controlled, crossover pilot trial, we evaluated the effects of 7-day H2 inhalation on exercise performance outcomes and serum hormonal and inflammation profiles in a cohort of young men and women. All participants (age 22.9 ± 1.5 years; body mass index 23.4 ± 2.5 kg m-2; 10 women and 10 men) were allocated to receive either gaseous hydrogen (4%) or placebo (room air) by 20-min once-per-day inhalation for 7 days, with a wash-out period of 7 days to prevent the residual effects of interventions across study periods. The primary treatment outcome was the change in running time-to-exhaustion in the incremental maximal test from baseline to day 7. Additionally, assessment of other exercise performance endpoints and clinical chemistry biomarkers was performed at baseline and at 7 days after each intervention. The trial was registered at (ID NCT03846141). Breathing 4% hydrogen for 20 min per day resulted in increased peak running velocity (by up to 4.2%) as compared to air inhalation (P = 0.05). Hydrogen inhalation resulted in a notable drop in serum insulin-like growth factor 1 (IGF-1) by 48.2 ng/mL at follow-up (95% confidence interval [CI]: from -186.7 to 89.3) (P < 0.05), while IGF-1 levels were elevated by 59.3 ng/mL after placebo intervention (95% CI; from -110.7 to 229.5) (P < 0.05). Inhalational hydrogen appears to show ergogenic properties in healthy men and women. Gaseous H2 should be further evaluated for its efficacy and safety in an athletic environment.

Hydrotherapy with hydrogen-rich water compared with RICE protocol following acute ankle sprain in professional athletes: a randomized non-inferiority pilot trial

We analysed the effects of an experimental novel protocol of intensive hydrotherapy with hydrogen-rich water (HRW) on injury recovery in athletic men who suffered an acute ankle sprain (AAS) and compared it with a RICE protocol (rest, ice, compression, elevation). Professional athletes (age 23.7 ± 4.0 years; weight 78.6 ± 5.7 kg, height 182.5 ± 4.3 cm; professional experience 5.9 ± 3.9 years) who incurred AAS during a sport-related activity were randomly assigned immediately after the injury to either hydrogen group (n = 9) or a conventional RICE treatment group (n = 9). Hydrogen group received six 30-min ankle baths with HRW throughout the first 24 h post-injury, with hydrotherapy administered every 4 hours during the intervention period. RICE group stood off the injured leg, with ice packs administered for 20 min every 3 hours, with the injured ankle compressed with an elastic bandage for 24 hours and elevated at all possible times above the level of the heart. HRW was equivalent to RICE protocol to reduce ankle swelling (2.1 ± 0.9% vs. 1.6 ± 0.8%; P = 0.26), range of motion (2.4 ± 1.3 cm vs. 2.7 ± 0.8 cm; P = 0.60), and single-leg balance with eyes opened (18.4 ± 8.2 sec vs. 10.7 ± 8.0 sec; P = 0.06) and closed (5.6 ± 8.4 sec vs. 3.9 ± 4.2 sec; P = 0.59). This non-inferiority pilot trial supports the use of HRW as an effective choice in AAS management. However, more studies are needed to corroborate these findings in other soft tissue injuries.