Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID II): a multi-centre, randomised, double-blind, placebo-controlled trial

Background: Inhaled molecular hydrogen gas (H2) has been shown to improve outcomes in animal models of cardiac arrest (CA). H2 inhalation is safe and feasible in patients after CA. We investigated whether inhaled H2 would improve outcomes after out-of-hospital CA (OHCA). Methods: HYBRID II is a prospective, multicentre, randomised, double-blind, placebo-controlled trial performed at 15 hospitals in Japan, between February 1, 2017, and September 30, 2021. Patients aged 20-80 years with coma following cardiogenic OHCA were randomly assigned (1:1) using blinded gas cylinders to receive supplementary oxygen with 2% H2 or oxygen (control) for 18 h. The primary outcome was the proportion of patients with a 90-day Cerebral Performance Category (CPC) of 1 or 2 assessed in a full-analysis set. Secondary outcomes included the 90-day score on a modified Rankin scale (mRS) and survival. HYBRID II was registered with the University Hospital Medical Information Network (registration number: UMIN000019820) and re-registered with the Japan Registry for Clinical Trials (registration number: jRCTs031180352). Findings: The trial was terminated prematurely because of the restrictions imposed on enrolment during the COVID-19 pandemic. Between February 1, 2017, and September 30, 2021, 429 patients were screened for eligibility, of whom 73 were randomly assigned to H2 (n = 39) or control (n = 34) groups. The primary outcome, i.e., a CPC of 1 or 2 at 90 days, was achieved in 22 (56%) and 13 (39%) patients in the H2 and control groups (relative risk compared with the control group, 0.72; 95% CI, 0.46-1.13; P = 0.15), respectively. Regarding the secondary outcomes, median mRS was 1 (IQR: 0-5) and 5 (1-6) in the H2 and control groups, respectively (P = 0.01). An mRS score of 0 was achieved in 18 (46%) and 7 (21%) patients in the H2 and control groups, respectively (P = 0.03). The 90-day survival rate was 85% (33/39) and 61% (20/33) in the H2 and control groups, respectively (P = 0.02). Interpretation: The increase in participants with good neurological outcomes following post-OHCA H2 inhalation in a selected population of patients was not statistically significant. However, the secondary outcomes suggest that H2 inhalation may increase 90-day survival without neurological deficits.

Hydrogen gas and preservation of intestinal stem cells in mesenteric ischemia and reperfusion

Background: Patients with mesenteric ischemia frequently suffer from bowel necrosis even after revascularization. Hydrogen gas has showed promising effects for ischemia-reperfusion injury by reducing reactive oxygen species in various animal and clinical studies. We examined intestinal tissue injury by ischemia and reperfusion under continuous initiation of 3% hydrogen gas. Aim: To clarify the treatment effects and target cells of hydrogen gas for mesenteric ischemia. Methods: Three rat groups underwent 60-min mesenteric artery occlusion (ischemia), 60-min reperfusion following 60-min occlusion (reperfusion), or ischemia-reperfusion with the same duration under continuous 3% hydrogen gas inhalation (hydrogen). The distal ileum was harvested. Immunofluorescence staining with caspase-3 and leucine-rich repeat-containing G-protein-coupled 5 (LGR5), a specific marker of intestinal stem cell, was conducted to evaluate the injury location and cell types protected by hydrogen. mRNA expressions of LGR5, olfactomedin 4 (OLFM4), hairy and enhancer of split 1, Jagged 2, and Neurogenic locus notch homolog protein 1 were measured by quantitative polymerase chain reaction. Tissue oxidative stress was analyzed with immunostaining for 8-hydroxy-2′-deoxyguanosine (8-OHdG). Systemic oxidative stress was evaluated by plasma 8-OHdG. Results: Ischemia damaged the epithelial layer at the tip of the villi, whereas reperfusion induced extensive apoptosis of the cells at the crypt base, which were identified as intestinal stem cells with double immunofluorescence stain. Hydrogen mitigated such apoptosis at the crypt base, and the LGR5 expression of the tissues was higher in the hydrogen group than in the reperfusion group. OLFM4 was also relatively higher in the hydrogen group, whereas other measured RNAs were comparable between the groups. 8-OHdG concentration was high in the reperfusion group, which was reduced by hydrogen, particularly at the crypt base. Serum 8-OHdG concentrations were relatively higher in both reperfusion and hydrogen groups without significance. Conclusion: This study demonstrated that hydrogen gas inhalation preserves intestinal stem cells and mitigates oxidative stress caused by mesenteric ischemia and reperfusion.

Hydrogen gas with extracorporeal cardiopulmonary resuscitation improves survival after prolonged cardiac arrest in rats

Background: Despite the benefits of extracorporeal cardiopulmonary resuscitation (ECPR) in cohorts of selected patients with cardiac arrest (CA), extracorporeal membrane oxygenation (ECMO) includes an artificial oxygenation membrane and circuits that contact the circulating blood and induce excessive oxidative stress and inflammatory responses, resulting in coagulopathy and endothelial cell damage. There is currently no pharmacological treatment that has been proven to improve outcomes after CA/ECPR. We aimed to test the hypothesis that administration of hydrogen gas (H2) combined with ECPR could improve outcomes after CA/ECPR in rats. Methods: Rats were subjected to 20 min of asphyxial CA and were resuscitated by ECPR. Mechanical ventilation (MV) was initiated at the beginning of ECPR. Animals were randomly assigned to the placebo or H2 gas treatment groups. The supplement gas was administered with O2 through the ECMO membrane and MV. Survival time, electroencephalography (EEG), brain functional status, and brain tissue oxygenation were measured. Changes in the plasma levels of syndecan-1 (a marker of endothelial damage), multiple cytokines, chemokines, and metabolites were also evaluated. Results: The survival rate at 4 h was 77.8% (7 out of 9) in the H2 group and 22.2% (2 out of 9) in the placebo group. The Kaplan-Meier analysis showed that H2 significantly improved the 4 h-survival endpoint (log-rank P = 0.025 vs. placebo). All animals treated with H2 regained EEG activity, whereas no recovery was observed in animals treated with placebo. H2 therapy markedly improved intra-resuscitation brain tissue oxygenation and prevented an increase in central venous pressure after ECPR. H2 attenuated an increase in syndecan-1 levels and enhanced an increase in interleukin-10, vascular endothelial growth factor, and leptin levels after ECPR. Metabolomics analysis identified significant changes at 2 h after CA/ECPR between the two groups, particularly in D-glutamine and D-glutamate metabolism. Conclusions: H2 therapy improved mortality in highly lethal CA rats rescued by ECPR and helped recover brain electrical activity. The underlying mechanism might be linked to protective effects against endothelial damage. Further studies are warranted to elucidate the mechanisms responsible for the beneficial effects of H2 on ischemia-reperfusion injury in critically ill patients who require ECMO support.

Hydrogen gas distribution in organs after inhalation: Real-time monitoring of tissue hydrogen concentration in rat

Hydrogen has therapeutic and preventive effects against various diseases. Although animal and clinical studies have reported promising results, hydrogen distribution in organs after administration remains unclear. Herein, the sequential changes in hydrogen concentration in tissues over time were monitored using a highly sensitive glass microsensor and continuous inhalation of 3% hydrogen gas. The hydrogen concentration was measured in the brain, liver, kidney, mesentery fat and thigh muscle of rats. The maximum concentration, time to saturation, and other measurements representing the dynamics of distribution were obtained from the concentration curves, and the results obtained for different organs were compared. The time to saturation was significantly longer (20.2 vs 6.3–9.4 min. P = 0.004 in all cases) and increased more gradually in muscle than in the other organs. The maximum concentration was the highest in liver and the lowest in the kidney (29.0 ± 2.6 vs 18.0 ± 2.2 μmol/L; P = 0.03 in all cases). The concentration varied significantly depending on the organ (P = 0.03). These results provide the fundamentals for elucidating the mechanisms underlying the in vivo favourable effects of hydrogen gas in mammalian systems.

Inhalation of Hydrogen Gas Is Beneficial for Preventing Contrast-Induced Acute Kidney Injury in Rats

Background: The present study aimed at investigating the effect of a novel antioxidant, hydrogen (H2) gas, on the severity of contrast-induced acute kidney injury (CIAKI) in a rat model. Methods: CIAKI was induced in rats by intravenous injection of a contrast medium, Ioversol, in addition to reagents inhibiting prostaglandin and nitric oxide synthesis. During the injection of these reagents, the rats inhaled H2 gas or control gas. Results: One day after the injection, serum levels of urea nitrogen were significantly lower in H2 gas-inhaling CIAKI rats (17.6 ± 2.3 mg/dl) than those in control gas-treated CIAKI rats (36.0 ± 7.3 mg/dl), although they both were elevated as compared to untreated rats (14.9 ± 0.9 mg/dl). Consistently, creatinine clearance in H2 gas-treated CIAKI rats was higher than that in control gas-treated counterparts. Renal histological analysis revealed that the formation of proteinaceous casts and tubular necrosis was improved by H2 gas inhalation. Mechanistic analyses showed that inhalation of H2 gas significantly reduced renal cell apoptosis, expression of cleaved caspase 3, and expression of an oxidative stress marker, 8-hydroxydeoxyguanosine, in injured kidneys. Conclusion: Results suggest that H2 gas inhalation is effective in ameliorating the severity of CIAKI in rats by reducing renal cell apoptosis and oxidative stress. © 2015 S. Karger AG, Basel.

Hydrogen gas inhalation inhibits progression to the ‘irreversible’ stage of shock after severe hemorrhage in rats

Background: Mortality of hemorrhagic shock primarily depends on whether or not the patients can endure the loss of circulating volume until radical treatment is applied. We investigated whether hydrogen (H2) gas inhalation would influence the tolerance to hemorrhagic shock and improve survival. Methods: Hemorrhagic shock was achieved by withdrawing blood until the mean arterial blood pressure reached 30-35 mm Hg. After 60 minutes of shock, the rats were resuscitated with a volume of normal saline equal to four times the volume of shed blood. The rats were assigned to either the H2 gas (1.3% H2, 26% O2, 72.7% N2)-treated group or the control gas (26% O2, 74% N2)-treated group. Inhalation of the specified gas mixture began at the initiation of blood withdrawal and continued for 2 hours after fluid resuscitation. Results: The survival rate at 6 hours after fluid resuscitation was 80% in H2 gas-treated rats and 30% in control gas-treated rats (p < 0.05). The volume of blood that was removed through a catheter to induce shock was significantly larger in the H2 gas-treated rats than in the control rats. Despite losing more blood, the increase in serum potassium levels was suppressed in the H2 gas-treated rats after 60 minutes of shock. Fluid resuscitation completely restored blood pressure in the H2 gas-treated rats, whereas it failed to fully restore the blood pressure in the control gas-treated rats. At 2 hours after fluid resuscitation, blood pressure remained in the normal range and metabolic acidosis was well compensated in the H2 gas-treated rats, whereas we observed decreased blood pressure and uncompensated metabolic acidosis and hyperkalemia in the surviving control gas-treated rats. Conclusions: H2 gas inhalation delays the progression to irreversible shock. Clinically, H2 gas inhalation is expected to stabilize the subject until curative treatment can be performed, thereby increasing the probability of survival after hemorrhagic shock.

The Effects of Hydrogen Gas Inhalation on Adverse Left Ventricular Remodeling After Percutaneous Coronary Intervention for ST-Elevated Myocardial Infarction – First Pilot Study in Humans

Background: Hydrogen gas inhalation (HI) reduced infarct size and mitigated adverse left ventricular (LV) remodeling in a rat model of acute myocardial infarction (AMI). We designed a prospective, open-label, rater-blinded clinical pilot study in patients experiencing ST-elevated MI (STEMI).Methods and Results:The 20 patients with an initial diagnosis of STEMI were assigned to either an HI group (1.3% H2with 26% oxygen) or a control group (26% oxygen). There were no HI-related severe adverse events. In the full analysis set, the cardiac salvage index as evaluated using cardiac magnetic resonance imaging at 7 days after primary percutaneous coronary intervention (PCI), showed no significant between-group difference (HI: 50.0±24.3%; control: 60.1±20.1%; P=0.43). However, the improvement from day 7 in the HI group was numerically greater than that in the control group in some of the surrogate outcomes at 6-month follow-up, including the LV stroke volume index (HI: 9.2±7.1 mL/m2; control: -1.4±7.2 mL/m2; P=0.03) and the LV ejection fraction (HI: 11.0%±9.3%; control: 1.7%±8.3%; P=0.11). Conclusions: The first clinical study has shown that HI during PCI is feasible and safe and may also promote LV reverse remodeling at 6 months after STEMI. The study was not powered to test efficacy and a further large-scale trial is warranted. (Clinical trials registration: UMIN00006825).

Hydrogen Gas Inhalation Attenuates Endothelial Glycocalyx Damage and Stabilizes Hemodynamics in a Rat Hemorrhagic Shock Model

Background: Hydrogen gas (H2) inhalation during hemorrhage stabilizes post-resuscitation hemodynamics, improving short-term survival in a rat hemorrhagic shock and resuscitation (HS/R) model. However, the underlying molecular mechanism of H2 in HS/R is unclear. Endothelial glycocalyx (EG) damage causes hemodynamic failure associated with HS/R. In this study, we tested the hypothesis that H2 alleviates oxidative stress by suppressing xanthine oxidoreductase (XOR) and/or preventing tumor necrosis factor-alfa (TNF-α)-mediated syndecan-1 shedding during EG damage. Methods: HS/R was induced in rats by reducing mean arterial pressure (MAP) to 35 mm Hg for 60 min followed by resuscitation. Rats inhaled oxygen or H2 + oxygen after achieving shock either in the presence or absence of an XOR inhibitor (XOR-I) for both the groups. In a second test, rats received oxygen alone or antitumor necrosis factor (TNF)-α monoclonal antibody with oxygen or H2. Two hours after resuscitation, XOR activity, purine metabolites, cytokines, syndecan-1 were measured and survival rates were assessed 6 h after resuscitation. Results: H2 and XOR-I both suppressed MAP reduction and improved survival rates. H2 did not affect XOR activity and the therapeutic effects of XOR-I and H2 were additive. H2 suppressed plasma TNF-α and syndecan-1 expression; however, no additional H2 therapeutic effect was observed in the presence of anti-TNF-α monoclonal antibody. Conclusions: H2 inhalation after shock stabilized hemodynamics and improved survival rates in an HS/R model independent of XOR. The therapeutic action of H2 was partially mediated by inhibition of TNF-α-dependent syndecan-1 shedding.

Daily inhalation of hydrogen gas has a blood pressure-lowering effect in a rat model of hypertension

A recent clinical study demonstrated that haemodialysis with a dialysate containing hydrogen (H2) improves blood pressure control in end-stage kidney disease. Herein, we examined whether H2 has a salutary effect on hypertension in animal models. We subjected 5/6 nephrectomised rats to inhalation of either H2 (1.3% H2 + 21% O2 + 77.7% N2) or control (21% O2 + 79% N2) gas mixture for 1 h per day. H2 significantly suppressed increases in blood pressure after 5/6 nephrectomy. The anti-hypertensive effect of H2 was also confirmed in rats in a stable hypertensive state 3 weeks after nephrectomy. To examine the detailed effects of H2 on hypertension, we used an implanted telemetry system to continuously monitor blood pressure. H2 exerted an anti-hypertensive effect not only during daytime rest, but also during night-time activities. Spectral analysis of blood pressure variability revealed that H2 improved autonomic imbalance, namely by suppressing the overly active sympathetic nervous system and augmenting parasympathetic nervous system activity; these effects co-occurred with the blood pressure-lowering effect. In conclusion, 1-h daily exposure to H2 exerts an anti-hypertensive effect in an animal model of hypertension.