Therapeutic Effects of Hydrogen-Rich Solution on Aplastic Anemia in Vivo

Background: Aplasitc anemia (AA) is a bone marrow failure syndrome characterized by an immune-mediated destruction of hematopoietic stem cells. Though clinical symptoms could be ameliorated by bone marrow transplantation and/or immunosuppressive therapy, frequent recurrence and especially evolution of clonal hematologic diseases remains problematic clinically. Cytokines such as interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) secreted by autologous T cells are closely related with the development of AA. Hydrogen-rich solution was reported to inhibit the levels of cytokines including INF-γ, TNF-α and IL-6 in vivo in recent studies. This study was to investigate the potential therapeutic effects of hydrogen-rich solution on AA in vivo. Methods: AA model was determined in vivo by mice and body weights of the mice were used as the basic physiological index. Peripheral blood cells were calculated to evaluate the hematologic recovery degree. Bone marrow nucleated cells (BMNCs), tissue histology, as well as CFU-S and CFU-GM forming units were used to evaluate the recovery of bone marrow microenvironment. The ratio of CD4(+) and CD8(+) cells were examined along with cytokine levels in serum to determine the efficacy of H2-rich solution on the affected immunological functions. Results: Body weight and number of peripheral blood cells were significantly improved for mice in the H2-rich solution treated groups as compared with those with AA. The number of BMNCs and CFUs increased markedly and the bone marrow microenvironment was also improved significantly. The experimental group restrained the cell apoptosis, relieved hyperemia and accelerated tissue repair. The number of CD4(+) and CD8(+) cells as well as the ratio of CD4/CD8 increased to normal gradually, while the levels of TNF-α, IFN-γ, and IL-6 in serum decreased after H2-rich solution treatment. Conclusion: Our study firstly showed that hydrogen-rich solution accelerated the recovery of either hematological or immunological recovery on aplastic anemia mice. This finding suggests hydrogen-rich solution as a potential clinical therapeutic agent for AA. © 2013 S. Karger AG, Basel.

Administration of Hydrogen-Rich Saline Protects Mice From Lethal Acute Graft-Versus-Host Disease (aGVHD)

Allogeneic hematopoietic stem cell transplantation is a potentially curative therapy for many malignant and nonmalignant hematologic diseases. However, acute graft-versus-host disease (aGVHD) is a lethal complication of hematopoietic stem cell transplantation, which limits its application. Cytokines such as tumor necrosis factor-α and interleukin-6 play an extremely important role in the formation and development of aGVHD. Reactive oxygen species, such as hydroxyl radicals, also play an important role in the formation and development of aGVHD. In recent years, hydrogen was reported to have an ability to inhibit the levels of cytokines, such as tumor necrosis factor and interleukin-6 in vivo, and it also has a strong selective free radical-scavenging ability. Therefore, we hypothesized that hydrogen may have therapeutic effects on aGVHD. To determine whether hydrogen could protect mice from lethal GVHD in a major histocompatibility complex-incompatible murine bone marrow transplantation (BMT) model, survival rates of mice were calculated and leukocyte counts were also determined after BMT. We also examined serum cytokine levels and scored clinical signs of GVHD mice after BMT. This article demonstrated that the administration of hydrogen-rich saline increased the survival rate and clinical score of aGVHD mice. Administration of hydrogen-rich saline after transplantation also promoted the recovery of white blood cells of aGVHD mice. However, there was no report on the therapeutic effects of hydrogen on aGVHD. It is suggested that hydrogen has a potential as an effective and safe therapeutic agent on aGVHD.

Hydrogen Protects Mice From Dermatitis Caused by Local Radiation

Abstract Background: Radiation therapy produced unwanted side effect on normal tissues, such as radiodermatitis. Hydrogen was previously shown capable of radiation protective in both animals and cell cultures. The effect of hydrogen was now to be investigated on radiation-induced cutaneous. Objective: Development of dermatitis is a frequent side effect of radiotherapy of patients with head-and-neck cancer. Here we analyzed the radioprotective efficacy of hydrogen under conditions of local, single dose or fractionated radiation treatment, and its possible molecular mechanisms. Methods: Mice received either single-dose or fractioned irradiation of the head-and-neck area with or without subcutaneous injection of hydrogen solution before irradiation. In vitro, the effect of hydrogen medium on radiation-induced cell viability , apoptosis and biochemical assays was measured. Result: hydrogen significantly reduced the severity of dermatitis, accelerated tissue recovery, and reduced the extent of radiation induced weight loss in mice after a single dose of 15 or 20 Gy but not 25 Gy of radiation. Hydrogen was also protective from cumulative doses of 30 Gy delivered in three fractions, respectively. Hydrogen also protect HaCaT cells from radiation-induced injury, it could significantly inhibit ionizing injury. Conclusion: These results suggest that hydrogen has a positive effect on acute radiodermatitis.

Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction

Recent studies showed that hydrogen can be used as an effective radioprotective agent through scavenging free radicals. This study was undertaken to evaluate the radioprotective effects of hydrogen on immune system in mice. H2 was dissolved in physiological saline using an apparatus produced by our department. Spleen index and histological analysis were used to evaluate the splenic structural damage. Spleen superoxide dismutase, GSH, MDA were measured to appraise the antioxidant capacity and a DCF assay for the measurement of radical oxygen species. Cell apoptosis was evaluated by an Annexin V-FITC and propidium iodide staining method as well as the apoptotic proteins such as Bcl-2, Bax, caspase-3 and c-caspase-3. CD4+ and CD8+ T cells subtypes were detected by flow cytometry with FITC-labelled antimouse CD4 and PE antimouse CD8 staining. Real-time PCR was utilized to determine the CD4+ T cell subtypes and related cytokines. Our study demonstrated that pre-treatment with H2 could increase the spleen index and attenuate the radiation damage on splenic structure. Radical oxygen species level was also reduced by H2 treatment. H2 also inhibited radiation-induced apoptosis in splenocytes and down-regulated pro-apoptotic proteins in living mice. Radiation-induced imbalance of T cells was attenuated by H2 . Finally, we found that H2 could regulate the polarization of CD4+ T cells and the level of related cytokines. This study suggests H2 as an effective radioprotective agent on immune system by scavenging reactive oxygen species.