Histopathological influence of alkaline ionized water on myocardial muscle of mother rats

We have reported that a marked necrosis and subsequent fibrosis of myocardium occurred among male rats 15 weeks old given alkaline ionized water (AKW) during gestation and suckling periods, and after weaning. In this study, it was examined whether similar lesions would occur in mother rats which were given AKW from day zero of gestation to day 20 of lactation. The myocardial lesion in the mother rats given AKW showed cell infiltration, vacuolation and fibrosis in the papillary muscle of the left ventricle, as were observed in male rats of 15 weeks old. Myocardial degeneration may cause a leakage of potassium into the blood that results in a higher concentration of potassium in the blood in the test group than in that of the control group given tap water.

Influences of alkaline ionized water on milk yield, body weight of offspring and perinatal dam in rats

The authors previously reported that male offspring of mothers rats given alkaline ionized water (AKW) showed a significantly higher body weight by day 14 after birth than did offspring of mother rats given tap water (TPW); furthermore, marked myocardial necrosis and fibrosis were observed particularly in the former male offspring at the age of 15 weeks. In the present experiment we looked for differences in bioparameters, namely the milk yield of mothers and suckled milk volume of the offspring, between the AKW- and the TPW-treated groups in order to reveal the factors which cause the unusual body weight gain in the offspring. Even though we were able to repeat our previous observation (the body weight of the male offspring of the AKW group increased significantly more by day 14 and 20 after birth and of the female by day 20 after birth than did that of the TPW group (p < 0.05), no significant difference was noted in any of the bioparameters, including those related to milk production and consumption. It is thus suspected that the water-hydrated cation, which was transferred either to the fetus through the placenta or to the offspring through the milk, might be the cause of the unusual body weight increase. Since calcium plays an important role in skeletal formation, it is tentatively concluded that the higher calcium concentration of AKW enriched the mother, serum calcium which was transferred to the fetus through the placenta and to the offspring through the milk.

Influences of alkaline ionized water on milk electrolyte concentrations in maternal rats

We previously reported that body weight on day 14 after birth in male offspring of rats given alkaline ionized water (AKW) was significantly heavier than that in offspring of rats given tap water (TPW), but no significant difference was noted in milk yield and in suckled milk volume between the two groups. Additionally, the offspring in the AKW group and TPW group were given AKW and TPW, respectively, at weaning, and unexpectedly, the necrotic foci in the cardiac muscle were observed at the 15-week-old age in the AKW group, but not in the TPW group. The present study was designed to clarify the factors which are involved in that unusual increase of body weight and occurrence of cardiac necrosis. Eight dams in each group were given AKW or TPW (control) from day 0 of gestation to day 14 of lactation. The milk samples were collected on day 14 of lactation and analyzed for concentrations of calcium (Ca), sodium (Na), potassium (K), magnesium (Mg) and chloride (Cl). The AKW and TPW were also analyzed. Ca, Na and K levels in milk were significantly higher in the AKW group compared to the TPW group. No significant difference was noted in the Mg and Cl levels between the two groups. These data suggested that the Ca cation of AKW enriched the Ca concentration of the milk and accelerated the postnatal growth of the offspring of rats given AKW.