A randomized, placebo-controlled clinical trial of hydrogen/oxygen inhalation for non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide with increasing incidence consistent with obesity, type 2 diabetes and cardiovascular diseases. No approved medication was currently available for NAFLD treatment. Molecular hydrogen (H2 ), an anti-oxidative, anti-inflammatory biomedical agent is proved to exhibit therapeutic and preventive effect in various diseases. The purpose of this study was to investigate the effect of hydrogen/oxygen inhalation on NAFLD subjects and explore the mechanism from the perspective of hepatocyte autophagy. We conducted a randomized, placebo-controlled clinical trial of 13-week hydrogen/oxygen inhalation (China Clinical Trial Registry [#ChiCTR-IIR-16009114]) including 43 subjects. We found that inhalation of hydrogen/oxygen improved serum lipid and liver enzymes. Significantly improved liver fat content detected by ultrasound and CT scans after hydrogen/oxygen inhalation was observed in moderate-severe cases. We also performed an animal experiment based on methionine and choline-deficient (MCD) diet-induced mice model to investigate effect of hydrogen on mouse NASH. Hydrogen/oxygen inhalation improved systemic inflammation and liver histology. Promoted autophagy was observed in mice inhaled hydrogen/oxygen and treatment with chloroquine blocked the beneficial effect of hydrogen. Moreover, molecular hydrogen inhibited lipid accumulation in AML-12 cells. Autophagy induced by palmitic acid (PA) incubation was further promoted by 20% hydrogen incubation. Addition of 3-methyladenine (3-MA) partially blocked the inhibitory effect of hydrogen on intracellular lipid accumulation. Collectively, hydrogen/oxygen inhalation alleviated NAFLD in moderate-severe patients. This protective effect of hydrogen was possibly by activating hepatic autophagy. Keywords: MCD-induced NASH; NAFLD; autoph

Molecular Hydrogen Inhibits Colorectal Cancer Growth via the AKT/SCD1 Signaling Pathway

Objective: Molecular hydrogen (H2) has been considered a potential therapeutic target in many cancers. Therefore, we sought to assess the potential effect of H2 on colorectal cancer (CRC) in this study. Methods: The effect of H2 on the proliferation and apoptosis of RKO, SW480, and HCT116 CRC cell lines was assayed by CCK-8, colony formation, and flow cytometry assays. The effect of H2 on tumor growth was observed in xenograft implantation models (inhalation of 67% hydrogen two hours per day). Western blot and immunohistochemistry analyses were performed to examine the expression of p-PI3K, PI3K, AKT, pAKT, and SCD1 in CRC cell lines and xenograft mouse models. The expression of SCD1 in 491 formalin-fixed, paraffin-embedded CRC specimens was investigated with immunochemistry. The relationship between SCD1 status and clinicopathological characteristics and outcomes was determined. Results: Hydrogen treatment suppressed the proliferation of CRC cell lines independent of apoptosis, and the cell lines showed different responses to different doses of H2. Hydrogen also elicited a potent antitumor effect to reduce CRC tumor volume and weight in vivo. Western blot and IHC staining demonstrated that H2 inhibits CRC cell proliferation by decreasing pAKT/SCD1 levels, and the inhibition of cell proliferation induced by H2 was reversed by the AKT activator SC79. IHC showed that SCD1 expression was significantly higher in CRC tissues than in normal epithelial tissues (70.3% vs. 29.7%, p = 0.02) and was correlated with a more advanced TNM stage (III vs. I + II; 75.9% vs. 66.3%, p = 0.02), lymph node metastasis (with vs. without; 75.9% vs. 66.3%, p = 0.02), and patients without a family history of CRC (78.7% vs. 62.1%, p = 0.047). Conclusion: This study demonstrates that high concentrations of H2 exert an inhibitory effect on CRC by inhibiting the pAKT/SCD1 pathway. Further studies are warranted for clinical evaluation of H2 as SCD1 inhibitor to target CRC.