Peripheral endothelial function can be improved by daily consumption of water containing over 7 ppm of dissolved hydrogen: A randomized controlled trial

Background: Measurement of the reactive hyperemia index (RHI) using peripheral arterial tonometry (PAT) has shown benefits in the evaluation of vascular endothelial function and prediction of cardiovascular disease prognosis. Thus, it is important to examine the factors that promote the RHI. In this study, we aimed to investigate the effect of molecular hydrogen (H2) on reactive hyperemia-PAT of the small arteries of fingers in healthy people. Methods: To determine the efficacy of H2 for improving peripheral vascular endothelial function, water containing high H2 concentrations was administered to participants, and the Ln_RHI was measured in the finger vasculature. Sixty-eight volunteers were randomly divided into two groups: a placebo group (n = 34) that drank molecular nitrogen (N2)-containing water and a high H2 group (n = 34) that drank high H2 water (containing 7 ppm of H2: 3.5 mg H2 in 500-mL water). The Ln_RHI was measured before ingesting the placebo or high H2 water, 1 h and 24 h after the first ingestion, and 14 days after daily ingestion of high H2 water or the placebo. The mixed effects model for repeated measures was used in data analysis. Results: The high H2 group had a significantly greater improvement in Ln_RHI than the placebo group. Ln_RHI improved by 22.2% (p<0.05) at 24 h after the first ingestion of high H2 water and by 25.4% (p<0.05) after the daily consumption of high H2 water for 2 weeks. Conclusions: Daily consumption of high H2 water improved the endothelial function of the arteries or arterioles assessed by the PAT test. The results suggest that the continuous consumption of high H2 water contributes to improved cardiovascular health.

Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential

Molecular hydrogen (H2) is recognized as a medical gas applicable to numerous diseases including neurodegenerative diseases, metabolic disorders, and rheumatoid arthritis. Although the efficacy of H2 is reportedly attributed to its scavenging capability against the hydroxyl radical, the mechanisms underlying its therapeutic efficacy are not fully understood. Herein, we estimated the role of H2 in the energy converting system of the mitochondria, the source of reactive oxygen species. To investigate the effects of H2 on mitochondrial function, direction of electron flow, superoxide generation, and mitochondrial membrane potential were investigated. Forward electron transport (FET) or reverse electron transport (RET) was assessed by monitoring the decrease or increase of β-nicotinamide adenine dinucleotide hydrate (NADH, – or +, μM, respectively) in the presence of β-nicotinamide adenine dinucleotide (NAD+) and/or succinate in the isolated mitochondria. H2O2 converted from superoxide by superoxide dismutase (SOD) was measured to estimate electron leakage in the mitochondria. The effects of H2 on mitochondrial membrane potential were observed by staining cells with the fluorescence probe, teramethylrhodamine ethyl ester (TMRE). Despite the absence of succinate, a distinct RET was observed (from +0.0313 ± 0.0106 μM to +1.20 ± 0.302 μM) by adding 25 μM H2. In the presence of 5 μM NADH, RET by succinate inverted to FET from +1.62 ± 0.358 μM to -1.83 ± 0.191 μM, accompanied by a suppression of superoxide generated predominantly from complex I by 51.1%. H2 solely reduced mitochondrial membrane potential of the cultured cells by 11.3% as assessed by TMRE. The direction of electron flow was altered by H2 depending on the NAD+/NADH ratio, accompanied by suppression of superoxide generation H2 could suppress superoxide generation in complex I in vitro and reduce membrane potential in vivo. H2 may also neutralize semiquinone radicals to reduce superoxide produced in complex III. H2 may function as a rectifier of the electron flow affecting the mitochondrial membrane potential to suppress oxidative damage in mitochondria.