Assessment of the effects of hydrogen water on human gingival fibroblast cell culture in patients with chronic periodontitis

Background: Activated inflammatory cells produce reactive oxygen species (ROS) to eliminate pathogens. Under normal conditions, the pathogens are taken care of, and tissues are repaired. However, in periodontal disease, persistent inflammation causes increased ROS release and impaired healing. Therefore, removal of overproduced ROS using antioxidants is necessary. Hydrogen water has an antioxidative effect on cells and impedes oxidative stress-related disorders. Aim: To study the effect of hydrogen water on cell viability, migration, and its antioxidative potential in fibroblasts obtained from chronic periodontitis patients. Materials and methods: The gingival tissue samples were obtained from 26 subjects (13 periodontally healthy individuals and 13 chronic periodontitis patients) and processed. The human gingival fibroblasts were cultured and the assays were commenced once adequate growth was detected. The effect of hydrogen water on cell viability was checked by neutral red assay, while the migration potential was assessed by transwell migration assay. The antioxidative potential of hydrogen water was evaluated by CUPRAC assay. Statistical analysis: Intergroup comparison was done using Mann-Whitney U-test. Intragroup comparison was done using Wilcoxon signed-rank test. Results: Hydrogen water was nontoxic to the fibroblasts at 24 h and 48 h. The intergroup comparison of the cell viability between hydrogen water-treated periodontally healthy gingival fibroblasts (HF) and fibroblasts from patients with chronic periodontitis (CF) showed a statistically significant (P = 0.00) difference at 24 h and 48 h. Hydrogen water also positively influenced the migratory capacity. Hydrogen water-treated fibroblasts obtained from chronic periodontitis patients showed more migration in comparison to the healthy group (P = 0.00). Hydrogen water showed an antioxidative potential. The maximum potential was seen in relation to the fibroblasts obtained from chronic periodontitis patients at 48 h. Conclusion: Hydrogen water was nontoxic, increased the migratory capacity, and showed an antioxidative potential on human fibroblasts obtained from periodontally healthy individuals and patients with chronic periodontitis.

Assessment of antibacterial effect of hydrogen water on plaque from patients with chronic periodontitis

Background: Periodontitis is an inflammatory disease causing destruction of tissues surrounding the teeth. The primary etiological factor for periodontitis is plaque. An inference could be drawn that an overall reduction in microorganisms halts disease progression. It is desirable to have natural agents with minimal side effects to reduce the microbial load. Aim: The aim of the study is to assess the effect of hydrogen water on microbial count in plaque obtained from chronic periodontitis patients and to determine the antibacterial activity of hydrogen water at various time intervals. Materials and Methods: A total of twenty chronic periodontitis patients were included after obtaining approval from the institutional ethical committee. Written informed consent was obtained from all the twenty participants. Plaque samples were collected and exposed to hydrogen water at baseline, 1 min, 2 min 30 s, and 5 min. Samples were then cultured on blood agar and incubated in aerobic and anaerobic conditions. The colony forming units and total bacterial count were recorded after 24–48 h. Statistical Analysis: Intragroup pair-wise comparison was done using Wilcoxon sign-ranked test. Results: Hydrogen water showed antibacterial activity against aerobic and anaerobic organisms associated with chronic periodontitis. There was a statistically significant difference in the number of colony forming units from baseline to 1 and 2.5 min for the aerobic culture and also for baseline to 1, 2.5, and 5 min for the anaerobic culture. Conclusion: The data of the present study indicate that hydrogen water has an antibacterial effect on microorganisms associated with chronic periodontitis.