Hydrogen‑rich saline promotes neuronal recovery in mice with cerebral ischemia through the AMPK/mTOR signal‑mediated autophagy pathway

This study explored the protective effect and mechanism of hydrogen‑rich saline (HRS) on the neurological function of mice with cerebral ischemia. Effects of HRS on neurological function in mice with cerebral ischemia were evaluated by neurological function scores. Infarct volume and histological damage were evaluated by 2,3,5‑triphenyl tetrazolium chloride staining (TTC staining). Golgi‑Cox staining was conducted to measure the morphological changes of neuronal dendrites and dendritic spines. The expression of neuronal markers was detected by immunofluorescence. Western blot was used to detect protein expression. The infarct volume of mice in the HRS‑H group decreased significantly compared to that of the distal middle cerebral artery occlusion (dMCAO) group. Mice in the HRS‑H group had a lower neurological deficit score than that in the dMCAO group. Compared to the dMCAO group, the activity of superoxide dismutase (SOD) and the level of glutathione (GSH) significantly increased in the HRS‑H group. Compared with the dMCAO group, the number of apoptotic cells in the HRS‑H group decreased. Administration of HRS was shown to be able to decrease cavitation of the brain cortex after ischemia. The spine density in the HRS‑H group increased compared to that of the dMCAO group. In the in vitro experiment, compared with the oxygen‑glucose deprivation (OGD) group, the active oxygen content in the 75% HRM group decreased, and the mitochondrial membrane potential and adenosine triphosphate (ATP) content increased. Compared with the OGD group, the ratio of P‑AMPK and the levels of LC3II/LC3I in the hydrogen‑rich medium (HRM) group was upregulated, and P‑mTOR levels and P62 levels in the HRM group were down‑regulated. HRS can enhance neuroplasticity after ischemia and promote neurological recovery in mice with cerebral ischemia, which may involve the autophagy pathway mediated by the AMPK/mTOR signaling pathway.

Micromotor-Enabled Active Hydrogen and Tobramycin Delivery for Synergistic Sepsis Therapy

Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits limited survival benefit for severe cases. Here a biodegradable tobramycin-loaded magnesium micromotor (Mg-Tob motor) is successfully developed as a potential hydrogen generator and active antibiotic deliverer for synergistic therapy of sepsis. The peritoneal fluid of septic mouse provides an applicable space for Mg-water reaction. Hydrogen generated sustainably and controllably from the motor interface propels the motion to achieve active drug delivery along with attenuating hyperinflammation. The developed Mg-Tob motor demonstrates efficient protection from anti-inflammatory and antibacterial activity both in vitro and in vivo. Importantly, it prevents multiple organ failure and significantly improves the survival rate up to 87.5% in a high-grade sepsis model with no survival, whereas only about half of mice survive with the individual therapies. This micromotor displays the superior therapeutic effect of synergistic hydrogen-chemical therapy against sepsis, thus holding great promise to be an innovative and translational drug delivery system to treat sepsis or other inflammation-related diseases in the near future.

Hydrogen-rich saline alleviates cardiomyocyte apoptosis by reducing expression of calpain1 via miR-124-3p

Aims: Molecular hydrogen has been exhibited a protective function in heart diseases. Our previous study demonstrated that hydrogen-rich saline (HRS) could scavenge free radicals selectively and alleviate the inflammatory response in the myocardial ischaemia/reperfusion (I/R) injury, but the underlying mechanism has not been fully clarified. Methods and results: Adult (10 weeks) C57BL/6 male mice and neonatal rat cardiomyocytes were used to establish I/R and hypoxia/reoxygenation (H/R) injury models. I/R and H/R models were treated with HRS to classify the mechanisms of cardioproctective function. In this study, we found that miR-124-3p was significantly decreased in both I/R and H/R models, while it was partially ameliorated by HRS pretreatment. HRS treatment also alleviated ischaemia-induced apoptotic cell death and increased cell viability during I/R process, whereas silencing expression of miR-124-3p abolished this protective effect. In addition, we identified calpain1 as a direct target of miR-124-3p, and up-regulation of miR-124-3 produced both activity and expression of calpain1. It was also found that compared with the HRS group, overexpression of calpain1 increased caspase-3 activities, promoted cleaved-caspase3 and Bax protein expressions, and correspondingly decreased Bcl-2, further reducing cell viability. These results illustrated that calpain1 overexpression attenuated protective effect of HRS on cardiomyocytes in H/R model. Conclusions: The present study showed a protective effect of HRS on I/R injury, which may be associated with miR-124-3p-calpain1 signalling pathway.

Hydrogen-rich saline regulates NLRP3 inflammasome activation in sepsis-associated encephalopathy rat model

Sepsis-associated encephalopathy (SAE) is characterised by long-term cognitive impairment and psychiatric illness in sepsis survivors, associated with increased morbidity and mortality. There is a lack of effective therapeutics for SAE. Molecular hydrogen (H2) plays multiple roles in septic diseases by regulating neuroinflammation, reducing oxidative stress parameters, regulating signalling pathways, improving mitochondrial dysfunction, and regulating astrocyte and microglia activation. Here we report the protective effect of hydrogen-rich saline in the juvenile SAE rat model and its possible underlying mechanisms. Rats were injected intraperitoneally with lipopolysaccharide at a dose of 5 mg/kg to induce sepsis; Hydrogen-rich saline (HRS) was administered 1 h after LPS induction at a dose of 5 ml/kg and nigericin at 1 mg/kg 1 h before LPS injection. H&E staining for neuronal damage, TUNEL assay for detection of apoptotic cells, immunofluorescence, ELISA protocol for inflammatory cytokines and 8-OHdG determination and western blot analysis to determine the effect of HRS in LPS-induced septic rats. Rats treated with HRS showed decreased TNF-α and IL-1β expression levels. HRS treatment enhanced the activities of antioxidant enzymes (SOD, CAT and GPX) and decreased MDA and MPO activities. The number of MMP-9 and NLRP3 positive immunoreactivity cells decreased in the HRS-treated group. Subsequently, GFAP, IBA-1 and CD86 immunoreactivity were reduced, and CD206 increased after HRS treatment. 8-OHdG expression was decreased in the HRS-treated rats. Western blot analysis showed decreased NLRP3, ASC, caspase-1, MMP-2/9, TLR4 and Bax protein levels after HRS treatment, while Bcl-2 expression increased after HRS treatment. These data demonstrated that HRS attenuated neuroinflammation, NLRP3 inflammasome activation, neuronal injury, and mitochondrial damage via NLRP3/Caspase-1/TLR4 signalling in the juvenile rat model, making it a potential therapeutic agent in the treatment of paediatric SAE.

Hydrogen-Rich Saline-A Novel Neuroprotective Agent in a Mouse Model of Experimental Cerebral Ischemia via the ROS-NLRP3 Inflammasome Signaling Pathway In Vivo and In Vitro

Background: Our previous research revealed that inflammation plays an important role in the pathophysiology of cerebral ischemia. The function of the NOD-like receptor protein 3 (NLRP3) inflammasome is to activate the inflammatory process. Recent findings suggest that reactive oxygen species (ROS) are essential secondary messengers that activate the NLRP3 inflammasome. Hydrogen-rich saline (HS) has attracted attention for its anti-inflammatory properties. However, the protective effect and possible mechanism of HSin brain ischemia have not been well elucidated. Methods: To test the therapeutic effect of HS, we established a mouse model of distal middle cerebral artery occlusion (dMCAO) and an in vitro model of BV2 cells induced by lipopolysaccharide (LPS). The ROS scavenger N-acetylcysteine (NAC) was used to investigate the underlying mechanisms of HS. Results: HS significantly improved neurological function, reduced infarct volume, and increased cerebral blood flow in a dMCAO mouse model. ROS, NLRP3, Caspase-1, and IL-1β expression increased after cerebral ischemia, and this was reversed by HS treatment. In BV2 cells, the application of NAC further demonstrated that HS could effectively inhibit the expression of the ROS-activated NLRP3 inflammasome. Conclusions: HS, as a novel therapeutic option, could exert protect the brain by inhibiting the activation of the ROS-NLRP3 signaling pathway after cerebral ischemia.

Hyperbaric oxygen combined with hydrogen-rich saline protects against acute lung injury

Background: This study sought to investigate therapeutic effects of hydrogen-rich saline (HRS) combined with hyperbaric oxygen (HBO2) in an experimental rat model of acute lung injury (ALI). Method: Forty male Sprague-Dawley rats were randomly divided into sham, LPS, LPS + HBO2, LPS + HRS, and LPS + HBO2 + HRS groups. After an intratracheal injection of LPS-induced ALI, the rats were given a single-agent HBO2 or HRS or HBO2 + HRS treatment. The treatments were continued for three days in this experimental rat model of ALI. At the end of experiment, the lung pathological, inflammatory factors, and cell apoptosis in the pulmonary tissue were detected by Tunel method and cell apoptosis rate was calculated accordingly. Results: In the groups treated with HBO2 + HRS, pulmonary pathological data, wet-dry weight ratio, and inflammatory factors of pulmonary tissues and alveolar lavage fluid were significantly superior to those of the sham group (p≺0.05). Cell apoptosis detection revealed that no single agent treatment of HRS or HBO2, or combination treatment, could alleviate all cell apoptosis. HRS combined with HBO2 treatment was superior to single treatment (p≺0.05). Conclusion: HRS or HBO2 single treatment could decrease inflammatory cytokines release in lung tissue, reduce the accumulation of oxidative products and alleviate apoptosis of pulmonary cells, then lead to positive therapeutic effects on ALI induced by LPS. Furthermore, HBO2 combined with HRS treatment presented a synergy effect on cell apoptosis decrease and a decline in inflammatory cytokine release and related inflammatory product generation, compared with a single treatment.

Protective Effect of Hydrogen-Rich Saline on Spinal Cord Damage in Rats

The anti-inflammatory and anti-apoptotic effects of molecular hydrogen, delivered as hydrogen-rich saline (HRS), on spinal cord injury was investigated. Four-month-old male Sprague Dawley rats (n = 24) were classified into four groups: (1) control-laminectomy only at T7-T10; (2) spinal injury-dura left intact, Tator and Rivlin clip compression model applied to the spinal cord for 1 min, no treatment given; (3) HRS group-applied intraperitoneally (i.p.) for seven days; and (4) spinal injury-HRS administered i.p. for seven days after laminectomy at T7-T10 level, leaving the dura intact and applying the Tator and Rivlin clip compression model to the spinal cord for 1 min. Levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured in blood taken at day seven from all groups, and hematoxylin-eosin (H & E) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) were used to stain the tissue samples. IL-6 and TNF-α levels were significantly lower in the group treated with HRS following the spinal cord injury compared to the group whose spinal cord was damaged. A decrease in apoptosis was also observed. The anti-inflammatory and anti-apoptotic effect of IL-6 may be a clinically useful adjuvant therapy after spinal cord injury.

Hydrogen Promotes the Effectiveness of Bone Mesenchymal Stem Cell Transplantation in Rats with Spinal Cord Injury

Although bone mesenchymal stem cell (BMSC) transplantation has been applied to the treatment of spinal cord injury (SCI), the effect is unsatisfactory due to the specific microenvironment (inflammation and oxidative stress) in the SCI area, which leads to the low survival rate of transplanted cells. Thus, additional strategies are required to improve the efficacy of transplanted cells in the treatment of SCI. Hydrogen possesses antioxidant and anti-inflammatory properties. However, whether hydrogen can enhance the effect of BMSC transplantation in the treatment of SCI has not yet been reported. This study was aimed at investigating whether hydrogen promotes the therapeutic effect of BMSC transplantation in the treatment of SCI in rats. In vitro, BMSCs were cultured in a normal medium and a hydrogen-rich medium to study the effect of hydrogen on the proliferation and migration of BMSCs. BMSCs were treated with a serum-deprived medium (SDM), and the effects of hydrogen on the apoptosis of BMSCs were studied. In vivo, BMSCs were injected into the rat model of SCI. Hydrogen-rich saline (5 ml/kg) and saline (5 ml/kg) were given once a day via intraperitoneal injection. Neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) and CatWalk gait analyses. Histopathological analysis, oxidative stress, inflammatory factors (TNF-α, IL-1β, and IL-6), and transplanted cell viability were detected at 3 and 28 days after SCI. Hydrogen can significantly enhance BMSC proliferation and migration and tolerance to SDM. Hydrogen and BMSC codelivery can significantly enhance neurological function recovery by improving the transplant cell survival rate and migration. Hydrogen can enhance the migration and proliferation capacity of BMSCs to repair SCI by reducing the inflammatory response and oxidative stress in the injured area. Hydrogen and BMSC codelivery is an effective method to improve BMSC transplantation in the treatment of SCI.

Hydrogen attenuates postoperative pain through Trx1/ASK1/MMP9 signaling pathway

Background: Postoperative pain is a serious clinical problem with a poorly understood mechanism, and lacks effective treatment. Hydrogen (H2) can reduce neuroinflammation; therefore, we hypothesize that H2 may alleviate postoperative pain, and aimed to investigate the underlying mechanism. Methods: Mice were used to establish a postoperative pain model using plantar incision surgery. Mechanical allodynia was measured using the von Frey test. Cell signaling was assayed using gelatin zymography, western blotting, immunohistochemistry, and immunofluorescence staining. Animals or BV-2 cells were received with/without ASK1 and Trx1 inhibitors to investigate the effects of H2 on microglia. Results: Plantar incision surgery increased MMP-9 activity and ASK1 phosphorylation in the spinal cord of mice. MMP-9 knockout and the ASK1 inhibitor, NQDI-1, attenuated postoperative pain. H2 increased the expression of Trx1 in the spinal cord and in BV-2 cells. H2 treatment mimicked NQDI1 in decreasing the phosphorylation of ASK1, p38 and JNK. It also reduced MMP-9 activity, downregulated pro-IL-1β maturation and IBA-1 expression in the spinal cord of mice, and ameliorated postoperative pain. The protective effects of H2 were abolished by the Trx1 inhibitor, PX12. In vitro, in BV-2 cells, H2 also mimicked NQDI1 in inhibiting the phosphorylation of ASK1, p38, and JNK, and also reduced MMP-9 activity and decreased IBA-1 expression induced by LPS. The Trx1 inhibitor, PX12, abolished the protective effects of H2 in BV-2 cells. Conclusions: For the first time, the results of our study confirm that H2 can be used as a therapeutic agent to alleviate postoperative pain through the Trx1/ASK1/MMP9 signaling pathway. MMP-9 and ASK1 may be the target molecules for relieving postoperative pain.

Hydrogen-Rich Saline Attenuates Chronic Allodynia after Bone Fractures via Reducing Spinal CXCL1/CXCR2-Mediated Iron Accumulation in Mice

Purpose: Neuroinflammation often initiates iron overload in the pathogenesis of neurological disorders. Chemokine-driven neuroinflammation is required for central sensitization and chronic allodynia following fractures, but specific molecular modulations are elusive. This present study explored whether hydrogen-rich saline, as one potent anti-inflammatory pharmaceutical, could alleviate fracture-caused allodynia by suppressing chemokine CXCL1 expression and iron overload. Methods: A mouse model of tibial fracture with intramedullary pinning was employed for establishing chronic allodynia. Three applications of hydrogen-rich saline (1, 5 or 10 mL/kg) were administrated intraperitoneally on a daily basis from days 4 to 6 following fractures. Spinal CXCL1 and its receptor CXCR2 levels, transferrin receptor 1 (TfR1) expression and iron concentration were examined. Recombinant CXCL1, a selective CXCR2 antagonist and an iron chelator were used for verification of mechanisms. Results: Repetitive injections of hydrogen-rich saline (5 and 10 mL/kg but not 1 mL/kg) prevent fracture-caused mechanical allodynia and cold allodynia in a dose-dependent manner. Single exposure to hydrogen-rich saline (10 mL/kg) on day 14 after orthopedic surgeries controls the established persistent fracture allodynia. Furthermore, hydrogen-rich saline therapy reduces spinal CXCL1/CXCR2 over-expression and TfR1-mediated iron accumulation in fracture mice. Spinal CXCR2 antagonism impairs allodynia and iron overload following fracture surgery. Intrathecal delivery of recombinant CXCL1 induces acute allodynia and spinal iron overload, which is reversed by hydrogen-rich saline. Moreover, iron chelation alleviates exogenous CXCL1-induced acute pain behaviors. Conclusions: These findings identify that hydrogen-rich saline confers protection against fracture-caused chronic allodynia via spinal down-modulation of CXCL1-dependent TfR1-mediated iron accumulation in mice.