Hydrogen Flush After Cold Storage as a New End-Ischemic Ex Vivo Treatment for Liver Grafts Against Ischemia/Reperfusion Injury

Hirofumi Hirao, Hirokazu Tanaka, Ichiro Tamaki, Jiro Kusakabe, Junichi Yoshikawa, Koichiro Hata, Osamu Inamoto, Rene H. Tolba, Shinji Uemoto, Tatsuaki Tsuruyama, Tetsuya Tajima, Toru Goto, Toyonari Kubota, Yermek Nigmet, Yusuke Okamura

Read more:

DOI: 10.1002/lt.25326 DOI is the universal ID for this study.

This link will take you to the full study.

Abstract:

Cold storage (CS) remains the gold standard for organ preservation worldwide, although it is inevitably associated with ischemia/reperfusion injury (IRI). Molecular hydrogen (H2 ) is well known to have antioxidative properties. However, its unfavorable features, ie, inflammability, low solubility, and high tissue/substance permeability, have hampered its clinical application. To overcome such obstacles, we developed a novel reconditioning method for donor organs named hydrogen flush after cold storage (HyFACS), which is just an end-ischemic H2 flush directly to donor organs ex vivo, and, herein, we report its therapeutic impact against hepatic IRI. Whole liver grafts were retrieved from Wistar rats. After 24-hour CS in UW solution, livers were cold-flushed with H2 solution (1.0 ppm) via the portal vein (PV), the hepatic artery (HA), or both (PV + HA). Functional integrity and morphological damages were then evaluated by 2-hour oxygenated reperfusion at 37°C. HyFACS significantly lowered portal venous pressure, transaminase, and high mobility group box protein 1 release compared with vehicle-treated controls (P < 0.01). Hyaluronic acid clearance was significantly higher in the HyFACS-PV and -PV + HA groups when compared with the others (P < 0.01), demonstrating the efficacy of the PV route to maintain the sinusoidal endothelia. In contrast, bile production and lactate dehydrogenase leakage therein were both significantly improved in HyFACS-HA and -PV + HA (P < 0.01), representing the superiority of the arterial route to attenuate biliary damage. Electron microscopy consistently revealed that sinusoidal ultrastructures were well maintained by portal HyFACS, while microvilli in bile canaliculi were well preserved by arterial flush. As an underlying mechanism, HyFACS significantly lowered oxidative damages, thus improving the glutathione/glutathione disulfide ratio in liver tissue. In conclusion, HyFACS significantly protected liver grafts from IRI by ameliorating oxidative damage upon reperfusion in the characteristic manner with its route of administration. Given its safety, simplicity, and cost-effectiveness, end-ischemic HyFACS may be a novel pretransplant conditioning for cold-stored donor organs.

Publish Year 2018
Country Japan
Rank Positive
Journal Liver Transplantation
Primary Topic Liver
Secondary TopicSurgery/Transplantation
Model Rat
Tertiary TopicTransplantation/Graft Injury
Vehicle Saline (Dissolved)
pH Neutral
Application Immersion
Comparison
Complement