Methamphetamine (METH) is one of the most prevalently used illegal psychostimulants in many countries. Continuous exposure to METH leads to behavioral sensitization in animals, which can be used as a behavioral model with many mechanisms in common with relapse in humans. Molecular hydrogen has recently gained attention for its potential as a novel healthcare product with preventive and therapeutic applicability to a wide range of pathological conditions. However, it remains unclear whether and, if so, how hydrogen regulates METH-induced behavioral abnormalities. In the present study, we investigated the roles of molecular hydrogen on the acquisition and transfer of METH-induced behavioral sensitization and the accompanying changes in ERK phosphorylation and ΔFosB activation in the nucleus accumbens (NAc) of mice. To this end, male C57BL/6 mice received METH (0.1, 0.5 and 1.0 mg/kg, i.p.) injections for 7 days followed by a METH challenge (0.1, 0.5 and 1.0 mg/kg, i.p.) after a 7-day transfer period. Molecular hydrogen, delivered through a hydrogen-rich saline (HRS) injection (10 mL/kg, i.p., 3-h interval), was administered during the acquisition and transfer periods. We found that HRS administration was able to inhibit the acquisition and transfer of 0.1 and 0.5 mg/kg METH-induced behavioral sensitization to a certain extent, thereby attenuating the expression of behavioral sensitization. The HRS injections alone did not induce any obvious changes in locomotor activity in mice. Intriguingly, the increases in pERK and ΔFosB in the NAc, which accompanied the METH-induced behavioral sensitization, were also attenuated by the HRS treatments. Due to the anti-oxidative function of molecular hydrogen, the HRS injections reduced METH-induced reactive oxygen species and malondialdehyde generation in the NAc. These results suggest that molecular hydrogen serves as an anti-oxidative agent with potentially therapeutic applicability to the treatment of METH addicts.
Publish Year
2020
Country
China
Rank
Positive
Journal
Progress in Neuropsychopharmacology and Biological Psychiatry
Objective: Sepsis-associated encephalopathy (SAE) is characterized by diffuse cerebral and central nervous system (CNS) dysfunction. Microglia play a vital role in protecting the brain from neuronal damage, which is closely related to inflammatory ...
The development and maintenance of morphine tolerance showed association with neuroinflammation and dysfunction of central glutamatergic system (such as nitration of glutamate transporter). Recent evidence indicated that hydrogen could reduce the ...
Background and purpose: Poor-grade subarachnoid hemorrhage still has a poor prognosis. This randomized controlled clinical trial evaluated intracisternal magnesium sulfate infusion combined with intravenous hydrogen therapy in patients with ...
The development and maintenance of morphine tolerance showed association with neuroinflammation and dysfunction of central glutamatergic system (such as nitration of glutamate transporter). Recent evidence indicated that hydrogen could reduce the ...
Methamphetamine (METH) is one of the most prevalently used illegal psychostimulants in many countries. Continuous exposure to METH leads to behavioral sensitization in animals, which can be used as a behavioral model with many mechanisms in common ...
Methamphetamine (METH) is a highly addictive stimulant, and METH exposure can induce irreversible neuronal damage and cause neuropsychiatric and cognitive disorders. The ever-increasing levels of METH abuse worldwide have necessitated the ...