Local generation of hydrogen for enhanced photothermal therapy

Danyang Chen, Jin Meng, Penghe Zhao, Qian Chen, Qianjun He, Tian Yang, Xifeng Lu, Zhaokui Jin, Zhen Gu

Read more:

DOI: 10.1038/s41467-018-06630-2 DOI is the universal ID for this study.

This link will take you to the full study.


By delivering the concept of clean hydrogen energy and green catalysis to the biomedical field, engineering of hydrogen-generating nanomaterials for treatment of major diseases holds great promise. Leveraging virtue of versatile abilities of Pd hydride nanomaterials in high/stable hydrogen storage, self-catalytic hydrogenation, near-infrared (NIR) light absorption and photothermal conversion, here we utilize the cubic PdH0.2 nanocrystals for tumour-targeted and photoacoustic imaging (PAI)-guided hydrogenothermal therapy of cancer. The synthesized PdH0.2 nanocrystals have exhibited high intratumoural accumulation capability, clear NIR-controlled hydrogen release behaviours, NIR-enhanced self-catalysis bio-reductivity, high NIR-photothermal effect and PAI performance. With these unique properties of PdH0.2 nanocrystals, synergetic hydrogenothermal therapy with limited systematic toxicity has been achieved by tumour-targeted delivery and PAI-guided NIR-controlled release of bio-reductive hydrogen as well as generation of heat. This hydrogenothermal approach has presented a cancer-selective strategy for synergistic cancer treatment.

Publish Year 2018
Country China
Rank Positive
Journal Nature Communications
Primary Topic Whole Body
Secondary TopicCancer
Model Cell Culture
Tertiary TopicNovel Therapy
Vehicle Gas (Sustained Release)
pH N/A
Application Implantation