Inhalation of high concentration hydrogen gas improves short-term outcomes in a rat model of asphyxia induced-cardiac arrest
Read more:
DOI:
10.4103/2045-9912.241063
DOI is the universal ID for this study.
This link will take you to the full study.
Abstract:
Cardiogenic global brain hypoxia-ischemia is a devastating medical problem that is associated with unfavorable neurologic outcomes. Low dose hydrogen gas (up to 2.9%) has been shown to be neuroprotective in a variety of brain diseases. In the present study, we investigated the protective effect of water by electrolysis-derived high concentration hydrogen gas (60%) in a rat model of asphyxia induced-cardiac arrest and global brain hypoxia-ischemia. High concentration hydrogen gas was either administered starting 1 hour prior to cardiac arrest for 1 hour and starting 1 hour post-resuscitation for 1 hour (pre- & post-treatment) or starting 1 hour post-resuscitation for 2 hours (post-treatment). In animals subjected to 9 minutes of asphyxia, both therapeutic regimens tended to reduce the incidence of seizures and neurological deficits within 3 days post-resuscitation. In rats subjected to 11 minutes of asphyxia, significantly worse neurological deficits were observed compared to 9 minutes asphyxia, and pre- & post-treatment had a tendency to improve the success rate of resuscitation and to reduce the seizure incidence within 3 days post-resuscitation. Findings of this preclinical study suggest that water electrolysis-derived 60% hydrogen gas may improve short-term outcomes in cardiogenic global brain hypoxia-ischemia.| Publish Year | 2018 |
|---|---|
| Country | United States |
| Rank | Positive |
| Journal | Medical Gas Research |
| Primary Topic | Brain |
| Secondary Topic | Cardiopulmonary Resuscitation (CPR) |
| Model | Rat |
| Tertiary Topic | Hypoxia-Ischemia |
| Vehicle | Gas |
| pH | N/A |
| Application | Inhalation |
| Comparison | |
| Complement |