Hydroxyl-radical scavenging activity of hydrogen does not significantly contribute to its biological function
Fei Xie, Pengxiang Zhao, Qinjian Li, Xiaokang Zhang, Xin Zhang, Xuemei Ma, Xujuan Zhang, Yang Yi
Abstract:
Since Ohsawa et al. reported a biological antioxidant function of hydrogen in 2007, researchers have now shown it to exert protective effects in a wide range of human and animal disease models. Clinical observations and scientific arguments suggest that a selective scavenging property of H2 cannot adequately explain the beneficial effects of hydrogen. However, there is no experiment challenging the original published data, which suggested that molecular hydrogen dissolved in solution reacts with hydroxyl radicals in cell-free systems. Here we report that a hydrogen-saturated solution (0.6 mM) did not significantly reduce hydroxyl radicals in the Fenton system using 1 mM H2O2. We replicated the same condition as Ohsawa’s study (i.e. 5 μM H2O2), and observed a decrease in •OH radicals in both the H2-rich and N2-rich solutions, which may be caused by a decreased dissolved oxygen concentration. Finally, we determined the effect of hydrogen on a high-valence iron enzyme, horseradish peroxidase (HRP), and found that hydrogen could directly increase HRP activity in a dose-dependent manner. Overall, these results indicate that although H2 and •OH can react, the reaction rate is too low to have physiological function. The target of hydrogen is more complex, and its interaction with enzymes or other macro-molecules deserve more attention and in-depth study.
Publish Year |
2021 |
Country |
China |
Rank |
Neutral |
Journal |
BioRxiv |
Primary Topic |
Whole Body |
Secondary Topic | Hydrogen Biology |
Model |
Molecular Assay |
Tertiary Topic | ROS-Scavenging |
Vehicle |
Water (Dissolved) |
pH |
Neutral |
Application |
Assay Media |
Comparison |
|
Complement |
|
NIR-Activatable Heterostructured Nanoadjuvant Cop/Nicop Executing Lactate Metabolism Interventions ...
2023 - Whole Body - Immune Regulation
Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic non-invasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. ...
Micromotor-Enabled Active Hydrogen and Tobramycin Delivery for Synergistic Sepsis Therapy
2023 - Whole Body - Sepsis
Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits ...
Evaluation of the safety and potential lipid-lowering effects of oral hydrogen-rich coral calcium ...
2023 - Whole Body - Metabolic Syndrome
Background: Metabolic syndrome is characterized by a cluster-like occurrence of conditions such as hypertension, hyperglycaemia, elevated low-density lipoprotein (LDL) cholesterol or triglycerides (TG) and high visceral fat. Metabolic syndrome is ...
Diffusivity of various inert gases in rat skeletal muscle
1975 - Whole Body - Hydrogen Biology
Krogh's diffusion constant (K) was determined for various inert gases in isolated rat abdominal muscle at 37 degrees C by measuring the amount of gas diffusing per unit time and partial pressure difference through a portion of the muscle of known ...
Solubility of various inert gases in rat skeletal muscle
1975 - Whole Body - Hydrogen Biology
For the determination of solubility coefficients, isolated rat abdominal muscles were equilibrated at 37 degrees C with various inert gases saturated with water vapor. After rapid transfer into a closed chamber containing room air the amount of gas ...
Solubility of inert gases in dog blood and skeletal muscle
1980 - Whole Body - Hydrogen Biology
Solubility of H2, Ar, CH4 and SF6 was determined at 310 K (37 degrees C) in water, in saline (0.154 mol NaCl/l H2O), in plasma and whole blood of dogs, and in homogenates of the dog gastrocnemius muscle. The liquids were equilibrated with pure gases, ...