Subarachnoid hemorrhage (SAH) results in high rates of mortality and lasting disability. Hydrogen gas (H2) is an antioxidant with demonstrated neuroprotective efficacy. The present study examined the therapeutic efficacy of H2 inhalation on early brain injury following experimental SAH in rats and the potential underlying molecular mechanisms. The rats were randomly separated into three groups (n=36 per group): Sham, SAH and SAH + H2. Endovascular perforation of the right internal carotid artery was used to establish SAH. After perforation, rats in the SAH + H2 group inhaled 2.9% H2 with regular oxygen for 2 h. Then, 24 h post-SAH, TUNEL staining was used to detect apoptotic neurons, and both immunostaining and western blotting were conducted to examine changes in p38 MAPK activity and the expression levels of apoptotic regulators (Bcl-2, Bax and cleaved caspase-3) in the ventromedial prefrontal cortex. Then, 30 day post-SAH, Nissl staining was performed to detect neuronal injury, brain MRI was conducted to detect gross changes in brain structure and metabolism, the open field test was used to assess anxiety and the novel object recognition test was performed to assess memory. H2 inhalation following experimental SAH stabilized brain metabolites, improved recognition memory and reduced anxiety-like behavior, the neuronal apoptosis rate, phosphorylated p38 MAPK expression, cleaved caspase-3 expression and the Bax/Bcl-2 ratio. Collectively, the present results suggested that H2 inhalation can alleviate SAH-induced cognitive impairment, behavioral abnormalities and neuronal apoptosis in rats, possibly via inhibition of the p38 MAPK signal pathway.
Objective: Sepsis-associated encephalopathy (SAE) is characterized by diffuse cerebral and central nervous system (CNS) dysfunction. Microglia play a vital role in protecting the brain from neuronal damage, which is closely related to inflammatory ...
The development and maintenance of morphine tolerance showed association with neuroinflammation and dysfunction of central glutamatergic system (such as nitration of glutamate transporter). Recent evidence indicated that hydrogen could reduce the ...
Background and purpose: Poor-grade subarachnoid hemorrhage still has a poor prognosis. This randomized controlled clinical trial evaluated intracisternal magnesium sulfate infusion combined with intravenous hydrogen therapy in patients with ...
Hypoxic-ischemic encephalopathy (HIE) is still a major cause of neonatal death and disability as therapeutic hypothermia (TH) alone cannot afford sufficient neuroprotection. The present study investigated whether ventilation with molecular hydrogen ...
Molecular hydrogen (H2) protect neurons against reactive oxygen species and ameliorates early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study investigated the effect of H2 on delayed brain injury (DBI) using the rat SAH + ...
Neonatal hypoxic-ischemic encephalopathy (HIE) is a leading cause of death in neonates with no effective treatments. Recent advancements in hydrogen (H2) gas offer a promising therapeutic approach for ischemia reperfusion injury; however, the impact ...