Drinking hydrogen water enhances endurance and relieves psychometric fatigue: a randomized, double-blind, placebo-controlled study
Fumiaki Ohta, Hosung Lee, Hyowon Lee, Jonghyuk Park, Kohei Tano, Shigeo Ohta, Toshio Mikami, Tyler W. LeBaron
Read more:
DOI:
10.1139/cjpp-2019-0059
DOI is the universal ID for this study.
This link will take you to the full study.
Abstract:
Acute physical exercise increases reactive oxygen species in skeletal muscle, leading to tissue damage and fatigue. Molecular hydrogen (H2) acts as a therapeutic antioxidant directly or indirectly by inducing antioxidative enzymes. Here, we examined the effects of drinking H2 water (H2-infused water) on psychometric fatigue and endurance capacity in a randomized, double-blind, placebo-controlled fashion. In Experiment 1, all participants drank only placebo water in the first cycle ergometer exercise session, and for comparison they drank either H2 water or placebo water 30 min before exercise in the second examination. In these healthy non-trained participants (n = 99), psychometric fatigue judged by visual analogue scales was significantly decreased in the H2 group after mild exercise. When each group was divided into 2 subgroups, the subgroup with higher visual analogue scale values was more sensitive to the effect of H2. In Experiment 2, trained participants (n = 60) were subjected to moderate exercise by cycle ergometer in a similar way as in Experiment 1, but exercise was performed 10 min after drinking H2 water. Endurance and fatigue were significantly improved in the H2 group as judged by maximal oxygen consumption and Borg's scale, respectively. Taken together, drinking H2 water just before exercise exhibited anti-fatigue and endurance effects.
Publish Year |
2019 |
Country |
Japan |
Rank |
Positive |
Journal |
Canadian Journal of Physiology and Pharmacology |
Primary Topic |
Whole Body |
Secondary Topic | Excercise |
Model |
Human |
Tertiary Topic | Fatigue |
Vehicle |
Water, Commercial (Blue Mercury) |
pH |
Neutral |
Application |
Ingestion |
Comparison |
|
Complement |
|
NIR-Activatable Heterostructured Nanoadjuvant Cop/Nicop Executing Lactate Metabolism Interventions ...
2023 - Whole Body - Immune Regulation
Near-infrared (NIR) laser-induced photoimmunotherapy has aroused great interest due to its intrinsic non-invasiveness and spatiotemporal precision, while immune evasion evoked by lactic acid (LA) accumulation severely limits its clinical outcomes. ...
Micromotor-Enabled Active Hydrogen and Tobramycin Delivery for Synergistic Sepsis Therapy
2023 - Whole Body - Sepsis
Sepsis is a highly heterogeneous syndrome normally characterized by bacterial infection and dysregulated systemic inflammatory response that leads to multiple organ failure and death. Single anti-inflammation or anti-infection treatment exhibits ...
Evaluation of the safety and potential lipid-lowering effects of oral hydrogen-rich coral calcium ...
2023 - Whole Body - Metabolic Syndrome
Background: Metabolic syndrome is characterized by a cluster-like occurrence of conditions such as hypertension, hyperglycaemia, elevated low-density lipoprotein (LDL) cholesterol or triglycerides (TG) and high visceral fat. Metabolic syndrome is ...
Acute pre-exercise hydrogen rich water intake does not improve running performance at maximal ...
2022 - Whole Body - Excercise
Purpose: This study investigated the effects of acute, pre-exercise, hydrogen rich water (HRW) ingestion on running time to exhaustion at maximal aerobic speed in trained track and field runners. Methods: Twenty-four, male runners aged 17.5 ± 1.8 ...
Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male ...
2022 - Whole Body - Excercise
Regular physical activity confers health benefits and improves the general quality of life. Recently, alkaline-reduced water (ARW) consumption has garnered increasing attention in the field of sports. ARW effectively inhibits the oxidative stress ...
Effects of Intestinal Bacterial Hydrogen Gas Production on Muscle Recovery following Intense ...
2022 - Intestine - Excercise
This study aimed to examine the effects of hydrogen gas (H2) produced by intestinal microbiota on participant conditioning to prevent intense exercise-induced damage. In this double-blind, randomized, crossover study, participants ingested ...