Transcriptome analysis of hydrogen inhibits osteoclastogenesis of mouse bone marrow mononuclear cells

Hui Zeng, Wei Wang, Yong Liu, Yong Zeng

Read more:

DOI: 10.3892/etm.2023.12135 DOI is the universal ID for this study.

This link will take you to the full study.

Abstract:

Hydrogen (H2) is a major biodegradation product of implanted magnesium (Mg) alloys that are commonly used in the healing of bone fractures. Our earlier study showed that H2 can inhibit mouse bone marrow mononuclear cell (BMMC) osteoclastogenesis during the differentiation of these cells into osteoclasts, thereby facilitating fracture healing. However, the way by which H2 inhibits osteoclastogenesis remains to be elucidated. The present study used RNA-sequencing to study the transcriptome of H2-exposed BMMCs in an osteoclast-induced environment and identified the target genes and signaling pathways through which H2 exerts its biological effects. Several upregulated genes were identified: Fos, Dusp1, Cxcl1, Reln, Itga2b, Plin2, Lif, Thbs1, Vegfa and Gadd45a. Several downregulated genes were also revealed: Hspa1b, Gm4951, F830016B08Rik, Fads2, Hspa1a, Slc27a6, Cacna1b, Scd2, Lama3 and Col4a5. These differentially expressed genes were mainly involved in osteoclast differentiation cascades, as well as PI3K-AKT, Forkhead box O (FoxO), MAPK, peroxisome proliferator-activated receptor (PPAR), TNF, TGF-β, JAK-STAT, RAS, VEGF, hypoxia-inducible factor (HIF-1) and AMPK signaling pathways. In summary, the present study revealed the key genes and signaling pathways involved in the H2-mediated inhibition of osteoclastogenesis, thereby providing a theoretical basis for the significance of H2 and an experimental basis for the application of Mg alloys in the treatment of osteoporosis.

Publish Year 2023
Country China
Rank Positive
Journal Experimental and Therapeutic Medicine
Primary Topic Bone Marrow
Secondary TopicOsteoporosis
Model Mouse
Tertiary TopicOxidative Stress
Vehicle Gas (Sustained Release)
pH N/A
Application Implantation
Comparison
Complement