Protective effect of hydrogen-saturated saline on acute lung injury induced by oleic acid in rats
Read more:
DOI:
10.1186/s13018-017-0633-9
DOI is the universal ID for this study.
This link will take you to the full study.
Abstract:
Background The purpose of the study is to investigate the role and mechanisms of hydrogen-saturated saline (HSS) in the acute lung injury (ALI) induced by oleic acid (OA) in rats. Methods Rats were treated with OA (0.1 mL/kg) to induce ALI and then administered with HSS (5 mL/kg) by intravenous (iv) and intraperitoneal (ip) injection, respectively. Three hours after the injection with OA, the arterial oxygen partial pressure (PaO2), arterial oxygen saturation (SaO2), carbon dioxide partial pressure (PaCO2), and bicarbonate (HCO3⁻) levels were analyzed using blood gas analyzer. In addition, the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin 1β (IL-1β) and myeloperoxidase (MPO) activity were measured by commercial kits, and pathological changes of lung tissue were examined by HE staining. Finally, the correlations of MPO activity or MDA level with the levels of TNF-α or IL-1β were analyzed by Pearson’s correlation analysis. Results We found decreased PaO2 levels and the pathological changes of lung tissue of ALI after OA injection. In addition, OA increased the levels of MDA, TNF-α, and IL-1β, as well as MPO activity in lung tissues (P < 0.05). However, after treatment with HSS, all of these changes were alleviated (P < 0.05), and these changes were mitigated when treated with HSS by ip then iv injection (P < 0.05). Furthermore, MDA level and MPO activity were positively correlated with TNF-α and IL-1β levels in the lung tissue, respectively (P < 0.01). Conclusion HSS attenuated ALI induced by OA in rats and might protect against ALI through selective resistance to oxidation and inhibiting inflammatory infiltration.Publish Year | 2017 |
---|---|
Country | China |
Rank | Positive |
Journal | Journal of Orthopaedic Surgery and Research |
Primary Topic | Lung |
Secondary Topic | Lung Injury |
Model | Rat |
Tertiary Topic | Inflammation |
Vehicle | Saline (Dissolved) |
pH | Neutral |
Application | Injection |
Comparison | |
Complement |