Hypothermic Machine Perfusion with Hydrogen Gas Reduces Focal Injury in Rat Livers but Fails to Restore Organ Function
Akinobu Taketomi, Hiroki Bochimoto, Kengo Shibata, Kosei Nakamura, Masato Fujiyoshi, Moto Fukai, Norio Kawamura, Nur Khatijah Mohd Zin, Shingo Shimada, Sodai Sakamoto, Sunao Fujiyoshi, Takahisa Ishikawa, Tsuyoshi Shimamura
Abstract:
Background: We have previously reported the efficacy of post-reperfusion H2 gas treatment in cold storage (CS) and subsequent reperfusion of the rat liver. The present study aimed to evaluate the effect of H2 gas treatment during hypothermic machine perfusion (HMP) in rat livers retrieved from donation after circulatory death (DCD) and elucidate the mechanism of action of H2 gas.
Methods: Liver grafts were procured from rats after 30 min of cardiopulmonary arrest. The graft was subjected to HMP for 3 hours at 7°C using Belzer MPS with or without dissolved H2 gas. The graft was reperfused using an isolated perfused rat liver apparatus at 37°C for 90 minutes. Perfusion kinetics, liver damage, function, apoptosis, and ultrastructure were evaluated.
Results: Portal venous resistance, bile production, and oxygen consumption rates were identical in the CS, MP, and MP-H2 groups. Liver enzyme leakage was suppressed by MP (vs control), whereas H2 treatment did not show a combination effect. Histopathology revealed poorly stained areas with a structural deformity just below the liver surface in the CS and MP groups, whereas these findings disappeared in the MP-H2 group. The apoptotic index in the CS and MP groups was high but decreased in the MP-H2 group. Mitochondrial cristae were damaged in the CS group but preserved in the MP and MP-H2 groups. Conclusions: In conclusion, HMP and H2 gas treatment are partly effective in DCD rat livers but insufficient. Hypothermic machine perfusion can improve focal microcirculation and preserve mitochondrial ultrastructure.
Publish Year |
2023 |
Country |
Japan |
Rank |
Positive |
Journal |
Transplantation Proceedings |
Primary Topic |
Liver |
Secondary Topic | Surgery/Transplantation |
Model |
Rat |
Tertiary Topic | Ischemia-Reperfusion Injury |
Vehicle |
Perfusion Solution (Dissolved) |
pH |
Neutral |
Application |
Perfusion |
Comparison |
|
Complement |
|
Hydrogen gas alleviates acute ethanol-induced hepatotoxicity in mice via modulating TLR4/9 innate ...
2023 - Liver - Fatty Liver Disease (Alcoholic)
Alcoholic liver disease (ALD), which is induced by chronic heavy alcohol consumption, accompanies complicated pathological mechanisms, including oxidative stress, inflammation, cell death, epigenetic changes and acetaldehyde-mediated toxicity. ...
Investigating the Effect of Hydrogen-Rich Water on Liver Cell Injury and Liver Cancer by Regulating ...
Background Liver cancer is an extremely heterogeneous malignant disease among tumors identified to date. In recent years, a large number of studies have found that low-concentration hydrogen or hydrogen-rich water or hydrogen-saturated physiological ...
The Effect of Adjuvant Therapy with Molecular Hydrogen on Endogenous Coenzyme Q10 Levels and ...
2023 - Liver - Fatty Liver Disease (Nonalcoholic)
Molecular hydrogen (H2) has been recognized as a novel medical gas with antioxidant and anti-inflammatory effects. Non-alcoholic fatty liver disease (NAFLD) is a liver pathology with increased fat accumulation in liver tissue caused by factors other ...
Hydrogen attenuates endothelial glycocalyx damage associated with partial cardiopulmonary bypass in ...
2023 - Endothelium - Surgery/Transplantation
Cardiopulmonary bypass (CPB) causes systemic inflammation and endothelial glycocalyx damage. Hydrogen has anti-oxidant and anti-inflammatory properties; therefore, we hypothesized that hydrogen would alleviate endothelial glycocalyx damage caused by ...
Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing
2023 - Skin - Surgery/Transplantation
The heterogeneous and highly plastic cell populations of macrophages are important mediators of cellular responses during all stages of wound healing, especially in the inflammatory stage. Molecular hydrogen (H2), which has potent antioxidant and ...
Hydrogen-generating Si-based agent improves fat graft survival in rats
2023 - Skin - Surgery/Transplantation
Background: Regulating excessive inflammation and oxidative stress in fat grafting may improve retention rates. Hydrogen effectively combats oxidative stress and inflammation and reportedly inhibits ischemia-reperfusion injury in various organs. ...