Hydrogen-rich saline attenuates postoperative liver failure after major hepatectomy in rats
Ben Shun Hu, Fang Xie, Hua Min Tan, Hui Lu Zhang, Jia Mei Yang, Jing Wang Tan, Ka Chen, Yu Li Zhu, Yun Chang Tan
Abstract:
Background/Aims A major hepatectomy occasionally lead to acute liver failure and death. We demonstrated the anti-oxidative and anti-inflammatory effects and functional mechanisms of hydrogen-rich saline (HS), a novel antioxidant, on an experimental model of rats after a partial hepatectomy (PH). Methods The rats underwent a 90% hepatectomy. HS was given intraperitoneally after the operation and every 8 hours after. Results HS markedly improved the survival rate of two experimental groups after the massive hepatectomy and inhibited increases in serum levels of TBIL, DBIL, ALT and AST. The histopathological analysis demonstrated that HS attenuated inflammatory changes in the liver. HS administration markedly lowered the massive hepatectomy induced elevation of the serum hyaluronic acid (HA) concentrations. HS inhibited the formation of one of the markers of oxidative damage, malondialdehyde (MDA), and increased the activities of superoxide dismutase (SOD) in liver tissue. In the HS-treated group, increases in inflammatory cytokines, such as TNF-α, IL-6 and HMGB-1, were inhibited in the liver tissue. The NF-κB p65 staining revealed that HS inhibited the activation of the transcription factor nuclear factor kappa B (NF-kB). Conclusions HS attenuates the massive hepatectomy induced liver injury not only by attenuating oxidative damage, but also by reducing the production of inflammatory cytokines, such as TNF-α, IL-6 and HMGB-1, in part through the inhibition of NF-kB activation.
Publish Year |
2014 |
Country |
China |
Rank |
Positive |
Journal |
Gastroenterologie Clinique et Biologique |
Primary Topic |
Liver |
Secondary Topic | Surgery/Transplantation |
Model |
Rat |
Tertiary Topic | Postoperative Liver Failure |
Vehicle |
Saline (Dissolved) |
pH |
Neutral |
Application |
Injection |
Comparison |
|
Complement |
|
Hydrogen gas alleviates acute ethanol-induced hepatotoxicity in mice via modulating TLR4/9 innate ...
2023 - Liver - Fatty Liver Disease (Alcoholic)
Alcoholic liver disease (ALD), which is induced by chronic heavy alcohol consumption, accompanies complicated pathological mechanisms, including oxidative stress, inflammation, cell death, epigenetic changes and acetaldehyde-mediated toxicity. ...
Investigating the Effect of Hydrogen-Rich Water on Liver Cell Injury and Liver Cancer by Regulating ...
Background Liver cancer is an extremely heterogeneous malignant disease among tumors identified to date. In recent years, a large number of studies have found that low-concentration hydrogen or hydrogen-rich water or hydrogen-saturated physiological ...
The Effect of Adjuvant Therapy with Molecular Hydrogen on Endogenous Coenzyme Q10 Levels and ...
2023 - Liver - Fatty Liver Disease (Nonalcoholic)
Molecular hydrogen (H2) has been recognized as a novel medical gas with antioxidant and anti-inflammatory effects. Non-alcoholic fatty liver disease (NAFLD) is a liver pathology with increased fat accumulation in liver tissue caused by factors other ...
Hydrogen attenuates endothelial glycocalyx damage associated with partial cardiopulmonary bypass in ...
2023 - Endothelium - Surgery/Transplantation
Cardiopulmonary bypass (CPB) causes systemic inflammation and endothelial glycocalyx damage. Hydrogen has anti-oxidant and anti-inflammatory properties; therefore, we hypothesized that hydrogen would alleviate endothelial glycocalyx damage caused by ...
Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing
2023 - Skin - Surgery/Transplantation
The heterogeneous and highly plastic cell populations of macrophages are important mediators of cellular responses during all stages of wound healing, especially in the inflammatory stage. Molecular hydrogen (H2), which has potent antioxidant and ...
Hydrogen-generating Si-based agent improves fat graft survival in rats
2023 - Skin - Surgery/Transplantation
Background: Regulating excessive inflammation and oxidative stress in fat grafting may improve retention rates. Hydrogen effectively combats oxidative stress and inflammation and reportedly inhibits ischemia-reperfusion injury in various organs. ...