Efficacy of a Si-based agent against developing renal failure in a rat remnant kidney model

Ayumu Taniguchi, Hikaru Kobayashi, Masataka Kawamura, Motohide Uemura, Norio Nonomura, Ryoichi Imamura, Shigeaki Nakazawa, Taigo Kato, Toyofumi Abe, Yuki Kobayashi

Read more:

DOI: 10.1016/j.bbrc.2020.10.067 DOI is the universal ID for this study.

This link will take you to the full study.


Chronic renal failure is exacerbated by oxidative stress, and this condition is difficult to treat in advanced stages. Because of the lack of effective treatments, the disease is a global public health concern. We developed a Si-based agent that continuously generates hydrogen for more than 24 h by reacting with water under conditions similar to those in the gastrointestinal tract. Given the efficacy of hydrogen in the treatment of conditions associated with oxidative stress, we examined whether the Si-based agent had beneficial effects on the development of renal failure. The Si-based agent was orally administered to rats that were developing renal failure. Rats underwent 5/6 nephrectomy to establish a remnant kidney model. Specifically, on day -7, rats underwent right 2/3 nephrectomy, followed by light nephrectomy on day 0. Starting on day -3, the rats were administered a control or Si-based agent-containing diet for 8 weeks. Compared with the findings in control rats, the Si-based agent greatly suppressed the increases of both serum creatinine and urinary protein levels. All analyzed parameters of oxidative stress were significantly suppressed in the Si-based agent groups. Histopathological examination illustrated that glomerular hypertrophy was suppressed by the treatment. Quantitative real-time reverse transcription-polymerase chain reaction revealed that sirtuin 1 and heme oxygenase-1 expression was increased in the Si-based agent groups, suggesting improved antioxidant activity and reduced hypoxia. In addition, caspase-3 and interleukin-6 expression was suppressed in the Si-based agent groups, indicating the alleviation of apoptosis and inflammation. In conclusion, oral administration of a Si-based agent resulted in renoprotective effects, presumably by suppressing oxidative stress via hydrogen generation.

Publish Year 2020
Country Japan
Rank Positive
Journal Biochemical and Biophysical Research Communications
Primary Topic Kidney
Secondary TopicKidney Failure
Model Rat
Tertiary TopicOxidative Stress
Vehicle Gas (Sustained Release)
pH N/A
Application Ingestion