Effects of Intestinal Bacterial Hydrogen Gas Production on Muscle Recovery following Intense Exercise in Adult Men: A Pilot Study
Mitsuharu Matsumoto, Nobuhiko Eda, Nobuhiro Nakamura, Ryota Sone, Saki Tsuno, Takao Akama
Read more:
DOI:
10.3390/nu14224875
DOI is the universal ID for this study.
This link will take you to the full study.
Abstract:
This study aimed to examine the effects of hydrogen gas (H2) produced by intestinal microbiota on participant conditioning to prevent intense exercise-induced damage. In this double-blind, randomized, crossover study, participants ingested H2-producing milk that induced intestinal bacterial H2 production or a placebo on the trial day, 4 h before performing an intense exercise at 75% maximal oxygen uptake for 60 min. Blood marker levels and respiratory variables were measured before, during, and after exercise. Visual analog scale scores of general and lower limb muscle soreness evaluated were 3.8- and 2.3-fold higher, respectively, on the morning after treatment than that before treatment during the placebo trial, but not during the test beverage consumption. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations and production rates significantly increased with placebo consumption; no changes were observed with test beverage consumption. After exercise, relative blood lactate levels with H2-producing milk consumption were lower than those with placebo consumption. A negative correlation was observed between the variation of 8-OHdG and the area under the curve (AUC) of breath H2 concentrations. Lipid oxidation AUC was 1.3-fold higher significantly with H2-producing milk than with placebo consumption. Conclusively, activating intestinal bacterial H2 production by consuming a specific beverage may be a new strategy for promoting recovery and conditioning in athletes frequently performing intense exercises.
Publish Year |
2022 |
Country |
Japan |
Rank |
Positive |
Journal |
Nutrients |
Primary Topic |
Intestine |
Secondary Topic | Excercise |
Model |
Human |
Tertiary Topic | Fatigue |
Vehicle |
Gas |
pH |
N/A |
Application |
In Vivo Biotic Production |
Comparison |
|
Complement |
|
Hydrogen-rich water upregulates fecal propionic acid levels in overweight adults
2023 - Intestine - Obesity
Fecal short-chain fatty acids are responsive to oral hydrogen in overweight adults. Propionic acid significantly increased in participants who consumed hydrogen-rich water for 12 wk compared with those who consumed tap water. This finding holds ...
In vitro fermentation properties of magnesium hydride and related modulation effects on broiler ...
2023 - Intestine - Gut Microbiome
Magnesium hydride (MGH), a highly promising hydrogen-producing substance/additive for hydrogen production through its hydrolysis reaction, has the potential to enhance broiler production. However, before incorporating MGH as a hydrogen-producing ...
Hydrogen-Rich Water Ameliorates Metabolic Disorder via Modifying Gut Microbiota in Impaired Fasting ...
2023 - Intestine - Metabolic Syndrome
Objective: Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment ...
Acute pre-exercise hydrogen rich water intake does not improve running performance at maximal ...
2022 - Whole Body - Excercise
Purpose: This study investigated the effects of acute, pre-exercise, hydrogen rich water (HRW) ingestion on running time to exhaustion at maximal aerobic speed in trained track and field runners. Methods: Twenty-four, male runners aged 17.5 ± 1.8 ...
Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male ...
2022 - Whole Body - Excercise
Regular physical activity confers health benefits and improves the general quality of life. Recently, alkaline-reduced water (ARW) consumption has garnered increasing attention in the field of sports. ARW effectively inhibits the oxidative stress ...
Hydrogen improves exercise endurance in rats by promoting mitochondrial biogenesis
2022 - Intestine - Excercise
Background: Previous studies have shown that hydrogen water has antioxidant and anti-inflammatory effects on exercise-induced fatigue; however, its molecular mechanism remains unclar. Methods: Adult male Sprague-Dawley rats were randomly divided into ...