Exposure to inflammation in utero is related to perinatal brain injury, which is itself associated with high rates of long-term morbidity and mortality in children. Novel therapeutic interventions during the perinatal period are required to prevent inflammation, but its pathogenesis is incompletely understood. Activated microglia are known to play a central role in brain injury by producing a variety of pro-inflammatory cytokines and releasing oxidative products. The study is aimed to investigate the preventative potential of molecular hydrogen (H2), which is an antioxidant and anti-inflammatory agent without mutagenicity. Pregnant ICR mice were injected with lipopolysaccharide (LPS) intraperitoneally on embryonic day 17 to create a model of perinatal brain injury caused by prenatal inflammation. In this model, the effect of maternal administration of hydrogen water (HW) on pups was also evaluated. The levels of pro-inflammatory cytokines, oxidative damage and activation of microglia were determined in the fetal brains. H2 reduced the LPS-induced expression of pro-inflammatory cytokines, oxidative damage and microglial activation in the fetal brains. Next, we investigated how H2 contributes to neuroprotection, focusing on microglia, using primary cultured microglia and neurons. H2 prevented LPS- or cytokine-induced generation of reactive oxidative species by microglia and reduced LPS-induced microglial neurotoxicity. Finally, we identified several molecules influenced by H2, involved in the process of activating microglia. These results suggested that H2 holds promise for the prevention of inflammation related to perinatal brain injury.
The aim of this study was to investigate the effects ionised water has on embryonic development using Wistar rat animal model. For that purpose, alkaline and acidic water was prepared with a domestic water ioniser. It was found that the ...
The aim of the present study was to investigate long-term outcomes of the offspring in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) model and the effect of maternal molecular hydrogen (H2) administration. We have previously ...
Intrauterine inflammation causes preterm birth and is associated with complications in preterm neonates. Thus, strategies aimed at suppressing inflammation are expected to be effective for reducing the risk of preterm birth and associated ...
Objective: To explore the protective effect of hydrogen-rich water on the oxidative stress injury of astrocytes in mice and its effect on phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signal pathway. Methods: In vitro, mice astrocytes ...
The aim of the present study was to investigate long-term outcomes of the offspring in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) model and the effect of maternal molecular hydrogen (H2) administration. We have previously ...
Despite the well-known toxicity and the efforts to control its exposure, lead still has a serious health concern, particularly in young ages. Chelation therapy cannot correct the neurocognitive effects of chronic exposure. So, there is a requirement ...