Abstract: Effect of hydrogen therapy on the proteomic profile of exhaled breath condensate after recovery from COVID-19
Anna Ryabokon, Alexey Kononikhin, Anna Kozyr, Natalia Zakharova, Maria Indeykina, Alexander Brzhozovskiy, Ludmila Shogenova, Eugene Nikolaev, Sergey Varfolomeev, Alexander Chuchalin
Exhaled breath condensate (EBC) is a promising object for biomarkers search as it contains compounds reflecting changes of biological processes caused by various respiratory diseases including COVID-19. Molecular hydrogen was recently discovered as a new effective antioxidant that can restore lung function after COVID-19. The effect of molecular hydrogen on lung function was studied by comparing EBC protein profiles before and after hydrogen therapy in volunteers who had recovered from COVID-19. Total 108 EBC samples were collected with RTube devices from recovered volunteers before and after hydrogen inhalation. The collecting tube was additionally rinsed with methanol. Peptides obtained after tryptic digestion were analyzed by LC-MS/MS using a nano-LC Dionex system coupled to tims TOF Pro (Bruker) tandem high-resolution mass-spectrometer located in Skoltech. Totally 478 proteins and 1350 peptides were revealed. It was shown that in EBC of the group after the hydrogen therapy, the concentration of structural and protective proteins increased significantly, as well as the average number of detected proteins increased by 15% (from 349 to 398), and the intensity of the 36 most common proteins increased ~3 times compared with the group, which did not receive the therapy. Dermcidin, an antibiotic and proteolytic protein, was found one of the most often found proteins in the group after therapy. Overall, mass spectrometry based analysis showed both quantitative and qualitative EBC proteome changes before and after the hydrogen therapy. This work was partially supported by the RFBR grant 18-29-09158 MK.
Endotoxin-induced lung injury is one of the major causes of death induced by endotoxemia, however, few effective therapeutic options exist. Hydrogen inhalation has recently been shown to be an effective treatment for inflammatory lung injury, but the ...
Background: Asthma is one of the most common noninfectious chronic diseases characterized by type II inflammation. This study aimed to investigate the effects of molecular hydrogen on the pathogenesis of asthma. Methods: OVA sensitized asthma mouse ...
Background: To investigate whether the administration of hydrogen/oxygen mixture was superior to oxygen in improving symptoms in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). Methods: This prospective, ...
Background: Coronavirus disease (COVID-19) is currently the main public health problem worldwide. The administration of neutral electrolyzed saline, a solution that contains reactive species of chlorine and oxygen (ROS), may be an effective ...
Alcohol-based disinfectant shortage is a serious concern in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Acidic electrolyzed water (EW) with a high concentration of free available chlorine (FAC) shows strong ...