Effects of molecular hydrogen-dissolved alkaline electrolyzed water on intestinal environment in mice
Chihiro Ushiroda, Katsura Mizushima, Kazuhiko Uchiyama, Ryo Inoue, Tomohisa Takagi, Yasuki Higashimura, Yasuko Hirai, Yasunori Baba, Yoshinori Tanaka, Yuji Naito
Read more:
DOI:
10.4103/2045-9912.229597
DOI is the universal ID for this study.
This link will take you to the full study.
Abstract:
Increasing evidence indicates that molecular hydrogen-dissolved alkaline electrolyzed water (AEW) has various physiological activities such as antioxidative activity. Gut microbiota are deeply associated with our health through a symbiotic relationship. Recent reports have described that most gastrointestinal microbial species encode the genetic capacity to metabolize molecular hydrogen, meaning that molecular hydrogen might affect the gut microbial composition. Nevertheless, AEW effects on gut microbiota remain unknown. This study investigated AEW effects on the intestinal environment in mice, including microbial composition and short-chain fatty acid contents. After mice were administered AEW for 4 weeks, 16S rRNA gene sequencing analyses revealed their fecal microbiota profiles. Organic acid concentrations in cecal contents were measured using an HPLC system. Compared to the control group, AEW administration mice had significantly lower serum low-density lipoprotein cholesterol level and alanine aminotransferase activity. Organic acid concentrations of propionic, isobutyric, and isovaleric acids were higher in AEW-administered mice. Results of 16S rRNA gene sequencing analyses showed that the relative abundances of 20 taxa differed significantly in AEW-administered mice. Although the definitive role of gut microbes of AEW-administered mice remains unknown, our data demonstrate the possibility that AEW administration affects the gut microbial composition and that it has beneficial health effects in terms of cholesterol metabolism and liver protection.
Publish Year |
2018 |
Country |
Japan |
Rank |
Positive |
Journal |
Medical Gas Research |
Primary Topic |
Intestine |
Secondary Topic | Hydrogen Biology |
Model |
Mouse |
Tertiary Topic | Gut Microbiome |
Vehicle |
Water (Electrolysis) |
pH |
Alkaline |
Application |
Ingestion |
Comparison |
|
Complement |
|
Hydrogen-rich water upregulates fecal propionic acid levels in overweight adults
2023 - Intestine - Obesity
Fecal short-chain fatty acids are responsive to oral hydrogen in overweight adults. Propionic acid significantly increased in participants who consumed hydrogen-rich water for 12 wk compared with those who consumed tap water. This finding holds ...
In vitro fermentation properties of magnesium hydride and related modulation effects on broiler ...
2023 - Intestine - Gut Microbiome
Magnesium hydride (MGH), a highly promising hydrogen-producing substance/additive for hydrogen production through its hydrolysis reaction, has the potential to enhance broiler production. However, before incorporating MGH as a hydrogen-producing ...
Hydrogen-Rich Water Ameliorates Metabolic Disorder via Modifying Gut Microbiota in Impaired Fasting ...
2023 - Intestine - Metabolic Syndrome
Objective: Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment ...
Solubility of various inert gases in rat skeletal muscle
1975 - Whole Body - Hydrogen Biology
For the determination of solubility coefficients, isolated rat abdominal muscles were equilibrated at 37 degrees C with various inert gases saturated with water vapor. After rapid transfer into a closed chamber containing room air the amount of gas ...
Diffusivity of various inert gases in rat skeletal muscle
1975 - Whole Body - Hydrogen Biology
Krogh's diffusion constant (K) was determined for various inert gases in isolated rat abdominal muscle at 37 degrees C by measuring the amount of gas diffusing per unit time and partial pressure difference through a portion of the muscle of known ...
Solubility of inert gases in dog blood and skeletal muscle
1980 - Whole Body - Hydrogen Biology
Solubility of H2, Ar, CH4 and SF6 was determined at 310 K (37 degrees C) in water, in saline (0.154 mol NaCl/l H2O), in plasma and whole blood of dogs, and in homogenates of the dog gastrocnemius muscle. The liquids were equilibrated with pure gases, ...